69174.fb2
вдоль направления, параллельного базе. Эти лепестки налагаются на диаграмму направленности одиночной антенны, и полная диаграмма направленности (вернее, ее сечение плоскостью, проходящей через линию базы) имеет вид, показанный на рис. 107. Расстояние а может быть сделано очень большим: a D ; поэтому интерферометрами можно разрешить очень близко расположенные точечные источники.
Радиоизлучение точечного источника при наблюдениях с одиночной антенной записывается так, как показано на рис. 108, а, а при наблюдениях интерферометром так, как на рис. 108,6. Если угловые размеры источника много больше, чем Dq , то источник не регистрируется интерферометром. Изменяя длину базы, можно определить размеры и распределение яркости источника вдоль одной координаты. Проделав такой же ряд измерений при другой ориентации базы, можно узнать распределение яркости и по другой координате. В последние годы разработана методика радиоинтерферометрических наблюдений с использованием двух раздельных приемников. В этом случае антенны интерферометра могут быть разнесены на тысячи километров. С помощью таких систем в радиоастрономии удалось получить угловое разрешение порядка 10-4 секунды дуги намного лучше, чем дают оптические телескопы. Благодаря мощному развитию радиоастрономической техники к настоящему времени исследовано радиоизлучение Солнца и Луны, планет Солнечной системы от Меркурия до Урана включительно, многих объектов, принадлежащих нашей Галактике (остатков сверхновых звезд, пульсаров, диффузных и планетарных туманностей, облаков межзвездного газа), радиоизлучение внегалактических объектов. В результате радиоастрономических наблюдений были обнаружены внегалактические объекты нового типа - квазары (см. § 174). Радиоастрономические исследования позволили получить очень важные результаты во многих разделах астрофизики. С точки зрения наблюдательной радиодиапазон имеет некоторые особые преимущества перед оптическим. Так как радиоволны облаками не задерживаются, наблюдения на радиотелескопах ведутся и в облачную погоду. Кроме того, даже самые слабые космические источники радиоизлучения могут наблюдаться днем так же хорошо, как и ночью, поскольку Солнце радиодиапазоне “не подсвечивает” земную атмосферу. В инфракрасном диапазоне (на волнах длиной от 1 микрона до 1 миллиметра) используются обычные оптические телескопы. Главная трудность в этом диапазоне помехи со стороны теплового излучения телескопа и атмосферы. Кроме того, атмосфера сильно поглощает излучение в большей части инфракрасного диапазона. Однако имеется ряд участков спектра (“окна прозрачности”), в которых пропускание достаточно велико. Особые трудности возникают при наблюдениях рентгеновского излучения (длины волн от 0,1 до 10 ангстрем). Современные методы шлифовки и полировки материалов не позволяют изготовить зеркало с такой высокой точностью. Однако оказывается, что при падении и отражении луча под углом к нормали близким к 90° (“косое падение”), требования к точности изготовления зеркальной поверхности значительно ослабляются. Телескопы, использующие этот принцип, называются телескопами косого падения, и, будучи установленными на искусственных спутниках, позволяют измерять рентгеновское излучение космических источников. В рентгеновском и гамма-диапазоне для выделения более или менее узких углов используются также трубчатые коллиматоры - пакеты из параллельных трубок с достаточно толстыми стенками, установленные перед счетчиком энергичных фотонов. На длинах волн короче 10-4 Å (энергия кванта больше 100 Мэв) угловое разрешение получается благодаря самому методу регистрации (см. § 113): такие кванты при взаимодействии с веществом дают пары электронов и позитронов, направление движения которых почти такое же, как у самого кванта.
§ 111. Глаз как приемник излучения
В современной астрономии глаз наблюдателя используется в качестве приемника излучения не очень широко, главным образом при гидировании или в астрометрических наблюдениях. Почти все виды астрофизических исследований выполняются с помощью приемников других типов. Чувствительность глаза зависит от длины волны. В среднем глаз наблюдателя наиболее чувствителен к излучению с длиной волны l m = 5550 Å (зеленый цвет). По мере удаления от l m в обе стороны чувствительность глаза уменьшается и падает до нуля около 3900 и 7600 Å. Это - фиолетовая и красная границы видимой, или визуальной, области спектра. Зависимость чувствительности приемника излучения от длины волны называется спектральной характеристикой. Спектральную характеристику глаза часто называют кривой видности. У разных наблюдателей кривые видности несколько различаются. Средняя кривая видности дневного зрения, принятая международным соглашением, приведена на рис. 109, а. Максимум кривой видности ночного зрения сдвинут в сторону коротких волн примерно на 450 Å.
Минимальный поток излучения, который может быть обнаружен приемником, называется его порогом чувствительности. Порог чувствительности глаза очень мал - около 10-9 эрг× сек -1. Это соответствует примерно 103 квант/сек. Для того чтобы глаз достиг такой чувствительности, наблюдатель должен некоторое время побыть в темноте, адаптироваться. Явление адаптации к темноте состоит в том, что увеличивается диаметр зрачка, восстанавливается чувствительность ночного зрения и на сетчатой оболочке появляется особое светочувствительное вещество (зрительный пурпур). В результате глаз становится чувствительным к слабому освещению. Способность к адаптации позволяет глазу работать в очень широком диапазоне освещенностей (от дня к ночи освещенность изменяется, например, в 108 раз).
§ 112. Астрофотография
С середины прошлого века в астрономии стал применяться фотографический метод регистрации излучения. В настоящее время он занимает ведущее место в оптических методах астрономии. Длительные экспозиции на высокочувствительных пластинках позволяют получать фотографии очень слабых объектов в том числе таких, которые практически недоступны для визуальных наблюдений. В отличие от глаза, фотографическая эмульсия способна к длительному накоплению светового эффекта. Очень важным свойством фотографии является панорамность: одновременно регистрируется сложное изображение которое может состоять из очень большого числа элементов. Существенно, наконец, что информация, которая получается фотографическим методом, не зависит от свойств глаза наблюдателя, как это имеет место при визуальных наблюдениях. Фотографическое изображение, полученное однажды, сохраняется как угодно долго, и его можно изучать в лабораторных условиях. Фотографическая эмульсия состоит из зерен галоидного серебра (AgBr, AgCl и др.; в различных сортах эмульсии применяются разные соли), взвешенных в желатине. Под действием света в зернах эмульсии протекают сложные фотохимические процессы, в результате которых выделяется металлическое серебро. Чем больше света поглотилось данным участком эмульсии, тем больше выделяется серебра. Галоидное серебро поглощает свет в области l < 5000 Å . Область спектра 3000-5000 Å называют иногда фотографической (аналогично визуальной, 3900-7600 Å ). Чтобы сделать эмульсию чувствительной к желтым и красным лучам, в нее вводят органические красители - сенсибилизаторы, расширяющие область спектральной чувствительности. Панхроматические эмульсии - это сенсибилизированные эмульсии, чувствительные до 6500-7000 Å (в зависимости от сорта). Кривые спектральной чувствительности различных эмульсий показаны на рис. 109,6. Они широко применяются в астрономической и обычной фотографии. Значительно реже встречаются инфрахроматические эмульсии, чувствительные к инфракрасным лучам до 9000 Å , а иногда и до 13 000 Å .
Звезды на фотографиях выходят в виде кружков. Чем ярче звезда, тем большего диаметра получается кружок при данной экспозиции (рис. 110). Различие в диаметрах фотографических изображений звезд является чисто фотографическим эффектом и никак не связано с их истинными угловыми диаметрами. Научной обработке подвергаются, как правило, только сами негативы, так как при перепечатке искажается заключенная в них информация. В астрономии используются как стеклянные пластинки, так и пленки. Пластинки предпочтительны в тех случаях, когда по негативам изучается относительное положение объектов. Сравнивая между собой фотографии одной и той же части неба, полученные в разные дни, месяцы и годы, можно судить об изменениях, которые в этой области произошли. Так, смещение малых планет и комет (когда они находятся далеко от Солнца и хвост еще не заметен) среди звезд легко обнаруживается при сравнении негативов, полученных с интервалом в несколько суток. Собственные движения звезд, а также отдельных сгустков межзвездного вещества в газовых туманностях изучаются по фотографиям, полученным через большие интервалы времени, иногда достигающие многих десятилетий. Изменение блеска переменных звезд, вспышки новых и сверхновых звезд тоже легко обнаруживаются при сравнении негативов, полученных в разные моменты времени. Для исследования подобных изменений используются специальные приборы стереокомпаратор и блинк-микроскоп. Стереокомпаратор служит для обнаружения перемещений. Он представляет собой своего рода стереоскоп. Обе пластинки, снятые в разное время, располагаются так, что исследователь видит их изображения совмещенными. Если какая-либо звезда заметно сместилась, она “выскочит” из картинной плоскости. Блинк-микроскоп отличается от стереокомпаратора тем, что специальной заслонкой можно закрывать либо одно либо другое изображение. Если эту заслонку быстро колебать, то можно сравнивать не только положения, но и величины изображений звезд на обеих пластинках. Изменение положения или изменение звездной величины при этом легко обнаруживаются. Точные измерения положений звезд на пластинках производятся на координатных измерительных приборах. Почернение негатива приблизительно определяется произведением освещенности Е на продолжительность экспозиции t. Этот закон называется законом взаимозаместимости. Он выполняется более или менее хорошо лишь в ограниченном интервале освещенности. Для каждого сорта эмульсии можно указать освещенность или экспозиции, при которых он наиболее эффективен. В частности, очень чувствительные кино- и фотопленки, предназначенные для коротких экспозиций, не пригодны для длительных, применяемых в астрономии. Фотография позволяет проводить фотометрические исследования астрономических объектов, т.е. определять количественно их яркость и звездную величину. Для этого необходимо знать зависимость почернения негатива от освещенности провести калибровку негатива. Чтобы измерить степень почернения, надо пропустить сквозь негатив световой пучок, интенсивность которого регистрируется. Тогда почернение D можно выразить через оптическую плотность негатива:
(8.8)
где I0 - интенсивность падающего пучка, I - интенсивность пучка, прошедшего сквозь негатив. Зависимость
(8.9)
называется характеристической кривой эмульсии (рис. 111). Можно выделить три участка или области характеристической кривой: область недодержек, где крутизна кривой уменьшается с уменьшением Et, область нормальных экспозиций, где крутизна максимальна и зависимость почти линейна, и область передержек, где крутизна уменьшается с увеличением Et. При правильно выбранной экспозиции почернение должно соответствовать линейному участку. Чтобы построить характеристическую кривую, на эмульсию впечатывается изображение нескольких (обычно порядка 10) площадок, освещенность которых находится в известном отношении. Эта операция называется калибровкой негатива.
Зная характеристическую кривую, можно сравнивать освещенности, соответствующие различным точкам негатива, и в случае протяженных объектов, таких, как туманности или планеты, построить их изофоты. Этого достаточно для относительной фотометрии (т.е. измерения отношения яркости или блеска). Для абсолютной фотометрии (т.е. измерения абсолютных значений яркости или блеска) необходимо провести, кроме калибровки, еще и стандартизацию. Для стандартизации надо впечатать на эмульсию изображение площадки с известной яркостью (для протяженных источников) или иметь на негативе звезды с известными звездными величинами. При относительной фотометрии точечных объектов калибровка делается обычно по звездам с известным блеском. Для измерения почернения негатива применяются фотоэлектрические микрофотометры. В этих приборах интенсивность светового пучка, прошедшего сквозь негатив, измеряется фотоэлементом. Главный недостаток фотографической пластинки как приемника излучения - это нелинейная зависимость почернения от освещенности. Кроме того, почернение зависит от условий обработки. В результате точность фотометрических измерений, производимых фотографическим методом, обычно не превышает 5-7%.
§ 113. Фотоэлектрические приемники излучения
Для увеличения точности фотометрии применяются фотоэлементы, устанавливаемые в фокусе телескопа. Кратко напомним физическую сущность фотоэлектрического эффекта. В металлах и полупроводниках, кроме электронов, связанных с отдельными атомами, имеются свободные электроны, которые могут перемещаться в пределах всей кристаллической решетки. Электрон может выйти из кристаллической решетки, если он приобретет энергию, превышающую определенную пороговую величину W0 . Эта величина называется работой выхода. Электрон может по-лучить энергию различными способами, например, поглотив световой квант. Кванты с энергией, большей W0 , могут выбивать электроны из поверхности облучаемого материала. Это явление называется внешним фотоэлектрическим эффектом или фотоэлектронной эмиссией. Не каждый квант с энергией, большей W0 , выбивает электрон. Процентная доля квантов, выбивающих электроны, называется квантовым выходом. Обычно квантовый выход меньше 50%. Явление внешней фотоэлектронной эмиссии используется в фотоэлементах с внешним фотоэффектом, которые представляют собой простые двухэлектродные вакуумные приборы (рис. 112). Один из электродов
(отрицательный) называется фотокатодом, другой (положительный) - анодом. При освещении фотокатода из него выбиваются электроны, которые притягиваются анодом, и в цепи фотоэлемента течет ток (фототок), измеряемый достаточно чувствительным прибором. Фототок прямо пропорционален световому потоку, падающему на катод, и эта пропорциональность соблюдается в очень широких пределах. Чувствительность и спектральная характеристика фотокатода практически не меняется со временем. Эти обстоятельства позволяют выполнять фотометрические измерения с помощью фотоэлементов с очень высокой точностью (иногда до 0,1%), недоступной для фотографии. Благодаря высокой точности фотоэлектрическая техника прочно вошла в практику современной астрофизики. Как известно, энергия кванта e = hv. Поэтому фотоэлектрический эффект может вызываться только излучением с частотой, превышающей
(8.10)
(закон Эйнштейна). Предельная частота n 0 называется красной границей фотоэффекта. Она зависит от материала фотокатода. Чистые металлы имеют большую работу выхода и не годятся для изготовления фотокатодов для длин волн l > 3000 Å, используемых в наземных астрономических наблюдениях и в технике. Поэтому разработаны специальные фотокатоды, имеющие сложную физико-химическую структуру, которая обеспечивает малую работу выхода. Наиболее распространенные типы современных фотокатодов - это сурьмяно-цезиевый, мультищелочной и кислородно-цезиевый. Их спектральные характеристики показаны на рис. 113. Фотокатоды для длин волн, превышающих 12 500 Å, отсутствуют. Из-за малой работы выхода фотокатод эмитирует не только фотоэлектроны, но и термоэлектроны, т.е. такие, которые из-за тепловых движений приобрели энергию, превышающую работу выхода, и смогли покинуть фотокатод. Они образуют термоэлектронный темновой ток, который мешает измерению слабых фототоков. Простые фотоэлементы с внешним фотоэффектом применяются сейчас сравнительно редко. На смену им пришли более сложные фотоэлектрические приемники фотоумножители (ФЭУ). В этих приборах используется явление вторичной электронной эмиссии: электрон, обладающий достаточной энергией и разогнанный электрическим полем, попав на поверхность с малой работой выхода, может выбить несколько электронов. Таким образом, с помощью вторичной электронной эмиссии можно получить усиление фототока. Между фотокатодом (F) и анодом (A) в ФЭУ (рис. 114) имеется некоторое количество вторичноэлектронных эмиттеров - динодов (Д1 , Д2 и т.д.). Форма и расположение всех
электронов ФЭУ, а также приложенные к ним напряжения таковы, что фотоэлектрон, вырвавшийся из фотокатода, попадает на первый динод и выбивает из него несколько электронов, которые затем попадают на второй динод и выбивают соответственно еще большее количество электронов и т.д. В результате каждый фотоэлектрон приводит к образованию лавины вторичных электронов (до 108-109) на аноде. После фотоумножителя ставится либо прибор, измеряющий средний анодный ток, либо прибор, считающий отдельные импульсы, из которых состоит анодный ток. Поскольку каждый импульс соответствует отдельному фотоэлектрону, последний способ называется методом счета электронов. Так же как и в фотоэлементах, в фотоумножителях имеется фон темнового тока, мешающий измерениям слабых световых потоков.
Фотометрические приборы, в которых в качестве приемника света используется фотоэлемент или фотоумножитель, называются электрофотометрами. На рис. 115 приведена упрощенная схема звездного электрофотометра - прибора для фотоэлектрического измерения звездных величин: а - диафрагма, которая находится в фокусе телескопа; б - выдвижной окуляр с призмой для наведения на звезду; в радиоактивный люминофор, который служит для контроля постоянства чувствительности; с - светофильтр; л - линза поля, которая проектирует на фотокатод изображение объектива телескопа; Ф - фотоумножитель; Б1 - блок питания фотоумножителя; У - усилитель; Б2 - блок питания усилителя; Э - самопишущий электроизмерительный прибор, регистрирующий показания на движущейся бумажной ленте. Наблюдатель в процессе измерений несколько раз вводит звезду в диафрагму и выводит ее. Когда звезды нет, прибор записывает отсчет от фона неба, обусловленного свечением верхней атмосферы. Этот отсчет пропорционален площади диафрагмы, поэтому диафрагму стараются брать поменьше. Когда звезда находится в диафрагме, прибор записывает суммарный отсчет от фона и звезды и при обработке наблюдатель берет разность обоих отсчетов. Сравнивая отсчеты n1 и n2 от разных звезд, можно определить разность звездных величин, и по известной звездной величине m1 одной звезды вычислить звездную величину m2 другой звезды. Чтобы исключить влияние атмосферы, надо либо сравнивать звезды, находящиеся на одном зенитном расстоянии, либо определить из специальных наблюдений коэффициент прозрачности атмосферы. Если звезды не очень слабые, то с помощью звездного электрофотометра можно получить точность 0m,005-0m,01. Пользуясь светофильтрами, можно электрофотометром определить цветовые характеристики звезд, а если ввести в оптический путь поляризационный анализатор, то можно измерять с высокой точностью степень поляризации света звезд. В последнее время в астрономических наблюдениях все шире применяются преобразователи изображения - электоонно-оптические преобразователи (ЭОП) и телевизионные системы. Электронно-оптический преобразователь (рис. 116) состоит из фотокатода Ф, электронной линзы Л и экрана Э, люминесцирующего под действием электронов.
Электронная линза представляет собой положительно заряженный электрод, который разгоняет электроны до сравнительно большой энергии и заставляет их двигаться по строго определенным траекториям, так что фотоэлектрон, выбитый из какой-либо точки катода, попадает в только ей соответствующую точку экрана, и на экране образуется изображение такое же, как на фотокатоде, только более яркое. Благодаря большому квантовому выходу фотокатодов, ЭОП позволяет в принципе регистрировать изображения с более короткими экспозициями, чем обычная фотография. Особенно большой выигрыш в экспозиции дают ЭОП с кислородно-цезиевыми катодами (из-за низкой чувствительности эмульсий в инфракрасной области спектра). Телевизионные системы с чувствительными телевизионными трубками в принципе также позволяют регистрировать очень слабые изображения, причем может быть получено большое усиление контраста. Однако такие системы более сложны, и в астрономическую практику внедряются медленно. В инфракрасной области спектра (l > 1 мк) для регистрации излучения используются главным образом фотосопротивления - пленочные слои или кристаллы определенных полупроводниковых веществ, концентрация или подвижность носителей заряда в которых возрастает при облучении. Это явление называется фотопроводимостью и может быть использовано для регистрации излучения вплоть до миллиметрового диапазона. Красная граница спектральной характеристики фотосопротивления определяется конкретной природой материала. Фотосопротивления, чувствительные в инфракрасной области спектра, как правило, требуют охлаждения до низкой температуры. Высокая чувствительность в инфракрасной области может быть получена также с помощью некоторых типов болометров, охлаждаемых жидким гелием. Болометры принадлежат к классу тепловых приемников, действие которых основано на увеличении температуры при поглощении излучения. В болометрах используется зависимость электрического сопротивления от температуры. К классу тепловых приемников относятся также термопары, в которых используется термоэлектрический эффект, и оптико-акустические преобразователи (ОАП), в которых излучение поглощается в некотором газовом объеме, нагревает его и расширяет. Термопары и ОАП работают без охлаждения и годятся только для измерения сравнительно больших потоков излучения. Все тепловые приемники имеют перед фотоэлектрическими то преимущество, что их чувствительность в принципе не зависит от длины волны, т.е. они не селективны. В приборах, установленных на искусственных спутниках, для регистрации рентгеновского излучения используются счетчики Гейгера, сцинтилляционные счетчики и фотоумножители с особыми фотокатодами. Счетчики Гейгера представляют собой колбу с двумя электродами, наполненную некоторым газом, ионизующимся под действием рентгеновского излучения, и имеющую прозрачное для него окно. Рентгеновский квант, пройдя через газ, образует пару ион - электрон, они ускоряются в электрическом поле между электродами, сталкиваются с нейтральными молекулами, ионизуют их, и в результате образуется лавина ионов и электронов, которая регистрируется в виде импульса тока. Каждый импульс соответствует одному кванту. Сцинтилляционный счетчик состоит из сцинтиллятора - пластины вещества, которое дает световую вспышку при попадании рентгеновского кванта, - и фотоумножителя, который эту вспышку регистрирует. Разработаны фотоумножители, катоды которых непосредственно воспринимают рентгеновские кванты. В этом случае сцинтиллятор не нужен. Сцинтилляционные счетчики специальных типов используются и для обнаружения гамма-квантов при энергиях меньше 30 Мэв. При энергиях более 30 Мэв гамма-кванты образуют при взаимодействии с веществом электронно-позитронные пары, которые могут регистрироваться ионизационными камерами и ядерными эмульсиями. Если энергия кванта больше 1000 Мэв, то образованная им электронно-позитронная пара вызывает достаточно яркую вспышку при движении в атмосфере, которая может быть обнаружена специально сконструированным наземным телескопом. Эта вспышка объясняется оптическим эффектом, открытым акад. П.А. Черенковым: электрон или позитрон, имеющий скорость большую, чем скорость распространения света в некоторой среде (она всегда меньше, чем скорость света в пустоте), излучает световую энергию. Это излучение сконцентрировано в довольно узком угле, и, наблюдая его, можно определить направление прихода пары и породившего ее кванта.
§ 114. Спектральные приборы
В главе VII было показано, как, изучая спектры небесных светил, можно получить сведения об их химическом составе, температуре, давлении, вращении и т.д. Ниже мы рассмотрим основные типы спектральных приборов, применяемых в астрономии. Впервые спектры звезд и планет начал наблюдать в прошлом веке итальянский астроном Секки. После его работ спектральным анализом занялись многие другие астрономы. Вначале использовался визуальный спектроскоп, потом спектры стали фотографировать, а сейчас применяется также и фотоэлектрическая запись спектра. Спектральные приборы с фотографической регистрацией спектра обычно называют спектрографами, а с фотоэлектрической - спектрометрами.
На рисунке 117 дана оптическая схема призменного спектрографа. Перед призмой находятся щель и объектив, которые образуют коллиматор. Коллиматор посылает на призму параллельный пучок лучей. Коэффициент преломления материала призмы зависит от длины волны. Поэтому после призмы параллельные пучки, соответствующие различным длинам волн, расходятся под разными углами, и второй объектив (камера) дает в фокальной плоскости спектр, который фотографируется. Если в фокальной плоскости камеры поставить вторую щель, то спектрограф превратится в монохроматор. Перемещая вторую щель по спектру или поворачивая призму, можно выделять отдельные более или менее узкие участки спектра. Если теперь за выходной щелью монохроматора поместить фотоэлектрический приемник, то получится спектрометр. В настоящее время наряду с призменными спектрографами и спектрометрами широко применяются дифракционные. В этих приборах вместо призмы диспергирующим (т.е. разлагающим на спектр) элементом является дифракционная решетка. Наиболее часто используются отражательные дифракционные решетки. Отражательная решетка представляет собой алюминированное зеркало, на котором нанесены параллельные штрихи. Расстояние между штрихами и их глубина сравнимы с длиной волны. Например, дифракционные решетки, работающие в видимой области спектра, часто делаются с расстоянием между штрихами 1,66 мк (600 штрихов на 1 мм). Штрихи должны быть прямыми и параллельными друг другу по всей поверхности решетки, и расстояние между ними должно сохраняться постоянным с очень высокой точностью. Изготовление дифракционных решеток поэтому является наиболее трудным из оптических производств. Получая спектр с помощью призмы, мы пользуемся явлением преломления света на границе двух сред. Действие дифракционной решетки основано на явлениях другого типа - дифракции и интерференции света. Не объясняя в деталях принцип работы дифракционной решетки (он изучается в курсе физики), мы заметим лишь, что она дает, в отличие от призмы, не один, а несколько спектров. Это приводит к определенным потерям света по сравнению с призмой. В результате применение дифракционных решеток в астрономии долгое время ограничивалось исследованиями Солнца. Указанный недостаток был устранен американским оптиком Вудом. Он предложил придавать штрихам решетки определенный профиль, такой, что большая часть энергии концентрируется в одном спектре, в то время как остальные оказываются сильно ослабленными. Такие решетки называются направленными или эшелеттами. Основной характеристикой спектрального прибора является спектральная разрешающая сила где Dl - минимальный промежуток между двумя близкими линиями, при котором они регистрируются как раздельные. Чем больше разрешающая сила, тем более детально может быть исследован спектр и тем больше информации о свойствах излучающего объекта может быть в результате получено. Спектральные аппараты с направленными дифракционными решетками, при прочих равных условиях, могут обеспечить более высокую разрешающую силу, чем призменные. Другой важной характеристикой спектральных аппаратов является угловая дисперсия
(8.11)
где Da - угол между параллельными пучками, прошедшими диспергирующий элемент и различающимися по длине волны на Dl . Величина
(8.12)
где f - фокусное расстояние камеры, называется линейной дисперсией, которая выражает масштаб спектра в фокальной плоскости камеры и обозначается либо в миллиметрах на ангстрем, либо (для малых дисперсий) в ангстремах на миллиметр Так, дисперсия спектрографа 250 Å/мм, означает, что один миллиметр на спектрограмме соответствует интервалу длин волн Dl = 250 Å. Особенности оптической схемы и конструкции астрономических спектральных приборов сильно зависят от конкретного характера задач, для которых они предназначены. Спектрографы, построенные для получения звездных спектров (звездные спектрографы), заметно отличаются от небулярных, с которыми исследуются спектры туманностей. Солнечные спектрографы тоже имеют свои особенности. Мы не будем обсуждать здесь этих различий подробно, отметим лишь, что реальная разрешающая сила астрономических приборов зависит от свойств объекта. Если объект слабый, т.е. от него приходит слишком мало света, то его спектр нельзя исследовать очень детально, так как с увеличением разрешающей силы количество энергии, приходящейся на каждый разрешаемый элемент спектра, уменьшается. Поэтому самую высокую разрешающую силу имеют, естественно, солнечные спектральные приборы. У больших солнечных спектрографов она достигает 106. Линейная дисперсия этих приборов достигает 10 мм/Å (0,1 Å/мм). При исследовании наиболее слабых объектов приходится ограничиваться разрешающей силой порядка 100 или даже 10 и дисперсиями ~1000 Å/мм. Например, спектры слабых звезд получаются с помощью объективной призмы, которая является. простейшим астрономическим спектральным прибором. Объективная призма ставится прямо перед объективом телескопа, и в результате изображения звезд растягиваются в спектр. Камерой служит сам телескоп, а коллиматор не нужен, поскольку свет от звезды приходит в виде параллельного пучка. Такая конструкция делает минимальными потери света из-за поглощения в приборе. На рис. 118 приведена фотография звездного поля, полученная с объективной призмой.
Грубое представление о спектральном составе излучения можно получить с помощью светофильтров. В фотографической и визуальной областях спектра часто применяют светофильтры из окрашенного стекла. На рис. 119 приведены кривые, показывающие зависимость пропускания от длины волны для некоторых светофильтров, комбинируя которые с тем или иным приемником, можно выделить участки не уже нескольких сотен ангстрем. В светофильтрах из окрашенного стекла используется зависимость поглощения (абсорбции) света от длины волны. Светофильтры этого типа называются абсорбционными. Известны светофильтры, в которых выделение узкого участка спектра основано на интерференции света. Они называются интерференционными и могут быть сделаны довольно узкополосными, позволяющими выделить участки спектра шириной в несколько десятков ангстрем. Еще более узкие участки спектра (шириной около 1 Å) позволяют выделять интерференционно-поляризационные светофильтры. С помощью узкополосных светофильтров можно получить изображение объекта в каком-либо интересном участке спектра например, сфотографировать солнечную хромосферу в лучах Нa , (красная линия в бальмеровской серии спектра водорода), солнечную корону в зеленой и красной линиях, газовые туманности в эмиссионных линиях.
Для солнечных исследований разработаны приборы, которые позволяют получить монохроматическое изображение в любой длине волны. Это - спектрогелиограф и спектрогелиоскоп. Спектрогелиограф представляет собой монохроматор, за выходной щелью которого находится фотографическая кассета. Кассета движется с постоянной скоростью в направлении, перпендикулярном к выходной щели, и с такой же скоростью в плоскости выходной щели перемещается изображение Солнца. Легко понять что в этом случае на фотографической пластинке получится изображение Солнца в заданной длине волны, называемое спектрогелиограммой. В спектрогелиоскопе, перед выходной щелью и после выходной щели устанавливаются вращающиеся призмы с квадратным сечением. В результате вращения первой призмы некоторый участок солнечного изображения периодически перемещается в плоскости входной щели. Вращение обеих призм согласовано, и если оно происходит достаточно быстро то, наблюдая в зрительную трубу вторую щель, мы увидим мо-нохроматическое изображение Солнца. Радиоастрономические приемники, как правило не могут быстро перестраиваться с одной длины волны на другую без существенной потери чувствительности. Поэтому спектр космических источников радиоизлучения приходится воспроизводить по отдельным измерениям на различных частотах. В случае непрерывного спектра это может быть удовлетворительным, если он достаточно плавный, однако линии излучения и поглощения таким способом найти трудно. Поэтому монохроматические радиолинии (линия излучения нейтрального водорода l = 21 см, линии поглощения межзвездных молекул) были открыты только после того как теоретически было предсказано их существование и были вычислены ожидаемые длины волн.
§ 115. Астрофизические исследования с воздушных шаров, самолетов и космических аппаратов. Понятие о радиолокационных методах
До начала сороковых годов XX в. астрономы использовали для своих наблюдений почти исключительно визуальную область спектра и прилегающие к ней участки приблизительно от 3000 до 7000 Å. После окончания второй мировой войны стали быстро развиваться радиоастрономические методы исследования (радиоастрономия). Успехи радиоастрономии показали, как важно вести исследования в новых областях спектра, распространить наблюдения на возможно более широкий диапазон длин волн. Однако земная атмосфера непрозрачна в области l < 3000 Å и 15 мк < l < 1 мм. Следовательно, возникла задача проведения астрономических исследований вне земной атмосферы. В принципе сравнительно просто эта проблема решается для инфракрасного и субмиллиметрового излучения (15 мк < l < 1 мм). Основным веществом, поглощающим инфракрасную радиацию, является водяной пар, концентрация которого быстро уменьшается с высотой. На высотах около 25-30 км земная атмосфера становится прозрачной для инфракрасного излучения. Эти высоты вполне доступны современным воздушным шарам (“баллонам”), грузоподъемность которых достаточна, чтобы нести довольно большой телескоп диаметром до 1 м. Наблюдения с такой высоты имеет смысл проводить и в видимой области спектра, так как атмосферное дрожание здесь уже не будет ограничивать разрешающей силы телескопа. Первый “баллонный” телескоп “Стратоскоп-1” (диаметром в 50 см) был построен в США для фотографирования солнечной грануляции. Другой американский баллонный телескоп “Стратоскоп-2” (диаметром 90 см) запускался с целью исследования инфракрасных спектров планет и звезд. Подобные телескопы управляются в полете с Земли по радио. Телевизионные камеры, установленные на искателе, гиде и в фокусе Кассегрена, позволяют наводить телескоп на объект почти так же уверенно, как и при обычных наземных наблюдениях. В СССР успешно проводились полеты стратосферного солнечного телескопа с целью фотографирования солнечной грануляции. Для инфракрасной астрономии большие перспективы связаны с возможностью установки телескопов на самолетах. Самолетные летающие обсерватории не могут подниматься на такую большую высоту, как баллонные телескопы, однако они имеют ряд преимуществ (управляемый полет, присутствие наблюдателя на борту и т.п.). В ультрафиолетовой и рентгеновской областях спектра земная атмосфера поглощает так сильно, что для их изучения надо поднимать аппаратуру на высоту не менее 100 км над земной поверхностью, а это можно сделать только с помощью ракет и искусственных спутников Земли. Ракеты можно запускать чаще, но зато время их полета ограничено: всего несколько минут. На борту ракет и спутников устанавливаются небольшие телескопы с фотоэлектрическими фотометрами, спектральными аппаратами, приборы для приема рентгеновского излучения. Приборы действуют автоматически по заданной программе, а наблюдательный материал передается по радио, либо, в случае ракет и приземляющихся спутников, может быть получен исследователем по окончании полета. Обычно головка ракеты с научным оборудованием (приборный отсек) отделяется от ракеты (до того, как она входит в плотные слои атмосферы) и опускается на парашюте. Американский искусственный спутник “Ухуру” (“Свобода” на языке суахили; запуск производился в Африке в 1970 г.) был специально сконструирован для получения карты всего неба в рентгеновских лучах (энергии квантов от 2 до 10 кэв). С его помощью было обнаружено 125 рентгеновских источников, из которых более половины ранее не были известны. Другой астрономический спутник “ОАО-3”, или “Коперник” (названный в честь великого польского астронома и запущенный в 1973 г., когда праздновался юбилей Коперника - 500 лет со дня рождения), представляет собой телескоп-рефлектор диаметром 80 см, снабженный ультрафиолетовым спектрометром. С его помощью были получены спектры большого количества звезд в области от 700 до 3000 Å, недоступной наблюдениям с Земли. Автоматическая система фотоэлектрического гидирования при помощи небольших реактивных двигателей ориентации поддерживала при регистрации спектра точность наведения до 0",1. В настоящее время астрономия и космическая техника подошли вплотную к созданию длительно действующих крупных телескопов, специально сконструированных для работы на орбитах искуственных спутников Земли. Такой телескоп должен иметь систему автоматического наведения и высокоточной ориентации. Для технического обслуживания его будут периодически посещать космонавты. Большое значение для создания подобных космических обсерваторий имеет опыт работы, полученный советскими космонавтами на орбитальных станциях типа “Салют”. Другое важное направление, связанное с прогрессом ракетной техники, - это исследование Солнечной системы автоматическими межпланетными станциями. Советские автоматические станции трижды фотографировали обратную сторону Луны (в 1959, 1965 и 1969 гг.). 3 февраля 1966 г. Советский Союз впервые осуществил мягкую посадку автоматической станции на Луну и передачу изображения непосредственно с ее поверхности (“Луна-9”). 3 апреля 1966 г. впервые был успешно выведен на орбиту искусственный спутник Луны (советская станция “Луна-10”). Широкая программа исследования Луны осуществлялась также американскими учеными с помощью аппаратов типа “Рейнджер” (лунные станции с жесткой посадкой), “Орбитер” (искусственные спутники Луны), “Сервейор” (станции с мягкой посадкой) и “Аполлон” (станции, обеспечивающие высадку астронавтов на Луну). Американская программа ставила целью доставить на Луну человека. Советская программа была нацелена по-иному: исследовать Луну с помощью автоматических станций. Эти станции были двух типов: подвижные “луноходы” (“Луноход-1 и 2”) и станции, обеспечивающие доставку грунта с Луны на Землю (“Луна-16, 20 и 24”). Космические аппараты СССР и США совершили успешные полеты к Венере, Марсу, Меркурию и Юпитеру. Для исследования планет используются автоматические межпланетные станции (АМС) трех различных модификаций: а) пролетные, которые совершают однократное (в некоторых случаях двух- или трехкратное) прохождение вблизи исследуемой планеты, б) орбитальные, т.е. выводимые на орбиту искусственных спутников, и в) спускаемые, т.е. опускающиеся прямо на поверхность планеты и обеспечивающие прямые измерения физико-химических характеристик атмосферы, а иногда и поверхности. Пролетные аппараты - это своего рода разведчики: они получают сравнительно небольшой объем данных. Орбитальные аппараты позволяют обследовать значительную часть планеты, но только дистанционными (оптическими и радиофизическими) методами. Спускаемые аппараты получают весьма детальные данные об атмосфере и поверхности (недоступные пролетным и орбитальным аппаратам), но только в месте посадки. Наиболее оптимальным является сочетание орбитального и спускаемого аппарата, когда их данные взаимно дополняются. Такие сочетания были осуществлены в советских исследованиях Марса и Венеры. В 1974 г. были совершены вывод на орбиту искусственного спутника Марса “Марс-5” и посадка спускаемого аппарата “Марс-6”. В 1975 г. на орбиту искусственных спутников Венеры были выведены два искусственных спутника и совершили посадку два спускаемых аппарата (АМС “Венера-9” и “Венера-10”). Это были первые в мире искусственные спутники Венеры, а спускаемые аппараты впервые в мире передали на Землю изображение поверхности другой планеты. Советские спускаемые аппараты типа “Венера” исследуют атмосферу Венеры начиная с 1967 г.
Ввиду исключительной важности этих экспериментов мы опишем их более детально. Главной научной задачей АМС являлось определение основных физических параметров атмосферы планеты (температуры и давления) и ее химического состава. Станции состояли из орбитального отсека и спускаемого аппарата. Общий вид станции “Венера-4” дан на рис. 120. Орбитальный отсек нес спускаемый аппарат, научные приборы для исследований на трассе полета, солнечные батареи, радиокомплекс и устройства, необходимые для коррекции полета, в том числе жидкостный реактивный двигатель. Операция коррекции представляет собой исправление орбиты, которое вводится в определенный момент полета, когда АМС отошла от Земли достаточно далеко и определено, насколько реальная орбита отклонилась от заданной. Советские автоматические станции входили в атмосферу Венеры, в соответствии с программой, на второй космической скорости и по мере снижения тормозились. Когда перегрузки достигали определенной достаточно большой величины, происходило разделение спускаемого аппарата и орбитального отсека. Спускаемый аппарат представлял собой сферу диаметром около 1 м с теплоизоляцией, способной предохранить аппарат от сгорания при торможении. Когда он тормозился до скорости около 300 м/сек, по команде датчика внешнего давления вводились в действие тормозной и основной парашюты, которые уменьшали скорость снижения до нескольких метров в секунду. Одновременно с этим раскрывались антенные системы и включались радиовысотомер и радиопередатчик. Затем шла передача результатов изменений давления, плотности, температуры, химического состава и других данных по мере снижения спускаемого аппарата. Начиная с “Венеры-7” (1970 г.) измерения проводились не только при спуске, но и в течение некоторого времени после посадки на поверхность планеты (рис. 121).
Помимо измерений на спускаемых; аппаратах, проводившихся в нижних слоях атмосферы Венеры, важные результаты были получены с помощью научной аппаратуры, установленной на орбитальных отсеках. Эта аппаратура позволила получить данные о строении облачного слоя, надоблачной атмосферы, о полях и частицах в окрестностях планеты. На Марс посадить космический аппарат еще труднее, чем на Венеру, из-за малой плотности его атмосферы. Мягкая посадка на Марс была впервые осуществлена советским спускаемым аппаратом “Марс-3” (2 декабря 1971 г.), который отделился от автоматической станции, ставшей искусственным спутников планеты. До недавнего времени общине свойством всех астрономических методов был их пассивный характер: мы только наблюдали явления, регистрировали то, что природа сама нам показывала. Этим астрономия принципиально отличалась от физики, в основе которой лежит эксперимент - активный метод исследования. Экспериментатор не просто наблюдает явления природы, а вторгается в них, меняет условия опыта и, конечно, имеет больше шансов понять сущность явлений, чем если бы он ограничился пассивным наблюдением. Полеты космических кораблей постепенно превращают астрономию в экспериментальную науку. Со временем в исследовании планет и межпланетного пространства роль эксперимента в астрономии будет, по-видимому, быстро возрастать. Заметим, что полеты АМС являются не единственным средством экспериментального исследования Солнечной системы. Чисто экспериментальным методом является и радиолокация небесных тел. В направлении космического тела посылается мощный импульс радиоволн и принимается отраженный импульс. По запаздыванию отраженного импульса можно определить расстояние, по величине - коэффициент отражения. Форма импульса позволяет судить о размерах тела и степени гладкости его поверхности. Вращение исследуемого тела вызывает расширение импульса по частоте вследствие эффекта Доплера, и скорость вращения может быть определена по величине размытия. Могут исследоваться отражения от отдельных деталей на поверхности планет, облачного слоя, ионосферы и т.д. Конечно, такой способ годится только для объектов не очень удаленных; по-видимому, радиолокации никогда не удастся выйти за пределы Солнечной системы. Что же касается изучения самой Солнечной системы, то в этом радиолокация добилась уже больших успехов, а возможности ее использованы далеко не полностью. В качестве важнейших достижений радиолокационного метода укажем на измерение расстояния до Венеры, которое привело к значительному уточнению астрономической единицы, а также на определение периода вращения и радиуса этой планеты (см § 135).
СОЛНЦЕ
Солнце - типичная звезда, свойства которой изучены подробнее и лучше, чем других звезд, благодаря ее исключительной близости к Земле. В этой главе мы не только кратко рассмотрим имеющуюся информацию о Солнце, но и несколько подробнее те его свойства, которые характерны для всех звезд, что окажется весьма полезным при изучении их физической природы.
§ 116. Общие сведения о Солнце
Солнце представляется кругом с резко очерченным краем (лимбом). Видимый радиус Солнца несколько меняется в течение года вследствие изменения расстояния Земли от Солнца, вызванного эллиптичностью земной орбиты. Когда Земля в перигелии (начало января) видимый диаметр Солнца составляет 32’35”, а в афелии (начало июля) -33'31". На среднем расстоянии от Земли (1 а.е.) видимый радиус Солнца составляет 960", что соответствует линейному радиусу
Объем Солнца а его масса что дает среднюю плотность его вещества Ускорение силы тяжести на поверхности Солнца Наблюдения отдельных деталей на солнечном диске, а также измерения смещений спектральных линий в различных его точках говорят о движении солнечного вещества вокруг одного из солнечных диаметров, называемого осью вращения Солнца. Плоскость, проходящая через центр Солнца и перпендикулярная к оси вращения, называется плоскостью солнечного экватора. Она образует с плоскостью эклиптики угол в 7° 15' и пересекает поверхность Солнца по экватору. Угол между плоскостью экватора и радиусом, проведенным из центра Солнца в данную точку на его поверхности называется гелиографической широтой. Вращение Солнца обладает важной особенностью: его угловая скорость w убывает по мере удаления от экватора и приближения к полюсам (рис. 122), так что в среднем w = 14°,4 - 2°,7 sin2В, где В - гелиографическая широта. В этой формуле угловая скорость w измеряется углом поворота за сутки.
Таким образом, различные зоны Солнца вращаются вокруг оси с различными периодами. Для точек экватора сидерический период составляет 25 суток, а вблизи полюсов он достигает 30 суток. Вследствие движения Земли вокруг Солнца его вращение представляется земному наблюдателю несколько замедленным: период вращения на экваторе составляет 27 суток, а у полюсов - 32 суток (синодический период вращения). Поскольку Солнце вращается не как твердое тело, систему гелиографических координат нельзя жестко связать со всеми точками его поверхности. Условно гелиографические меридианы жестко связываются с точками, имеющими гелиографические широты В = ±16°. Для них сидерический период обращения составляет 25,38 суток, а синодический равен 27,28 суток. За начальный гелиографический меридиан принят тот, который 1 января 1854 г. в 0h по всемирному времени проходил через точку пересечения солнечного экватора с эклиптикой.
§ 117. Спектр и химический состав Солнца
В видимой области излучение Солнца имеет непрерывный спектр, на фоне которого заметно несколько десятков тысяч темных линий поглощения (рис. 123), называемых фраунгоферовыми по имени австрийского физика Фраунгофера, впервые описавшего эти линии в 1814 г.
Наибольшей интенсивности непрерывный спектр достигает в синезеленой части спектра, у длин волн 4300-5000 Å (см рис. 91). В обе стороны от максимума интенсивность солнечного излучения убывает. Солнечный спектр далеко простирается в невидимые коротковолновую и длинноволновую области. Результаты внеатмосферных наблюдений спектра Солнца, полученные с ракет и искусственных спутников показывают, что до длин волн около 2000 Å характер солнечного спектра такой же, как и в видимой области. Однако в более коротковолновой области он резко меняется: интенсивность непрерывного спектра быстро падает, г темные фраунгоферовы линии сменяются яркими эмиссионными (рис. 124).
Инфракрасная область солнечного спектра до 15 мк частично поглощается при прохождении сквозь земную атмосферу (рис. 125). Здесь расположены полосы молекулярного поглощения, принадлежащие в основном водяным парам, кислороду и углекислому газу. С Земли видны лишь некоторые участки солнечного спектра между этими полосами. Для длин волн, больших 15 мк, поглощение становится полным, и спектр Солнца доступен наблюдениям только с больших высот или внеатмосферными методами. Поглощение спектра Солнца молекулами воздуха продолжает оставаться сильным вплоть до области радиоволн длиной около 1 см, для которых земная атмосфера снова становится прозрачной. При этом обнаруживается, что в радиодиапазоне интенсивность солнечного спектра значительно больше, чем должна быть у тела с температурой 6000°. Убывание интенсивности радиоспектра Солнца с ростом длины волны в диапазоне метровых волн происходит так же, как и у абсолютно черного тела, имеющего температуру в миллион градусов. Другой важной особенностью радиоизлучения Солнца является его переменность, увеличивающаяся с ростом длины волны. Этим радиодиапазон существенно отличается от видимой области спектра, интенсивность которой исключительно постоянна. Подобной же переменностью обладает и рентгеновское излучение Солнца.
Важнейшей особенностью солнечного спектра от длины волны около 1600 Å до инфракрасного диапазона является наличие темных фраунгоферовых линий поглощения. По длинам волн они в точности соответствуют линиям испускания разреженного светящегося газа. Появление их в поглощении в спектре солнечной атмосферы обусловлено значительно большей ее непрозрачностью к излучению в этих линиях, чем в соседнем непрерывном спектре. Тем самым в них мы наблюдаем излучение, исходящее от более наружных, а следовательно, и более холодных слоев. Дополнительное поглощение вызвано соответствующими атомами, которые возбуждаются за счет поглощенных квантов. Возбужденные атомы тут же переизлучают поглощенную энергию, причем одинаково по всем направлениям. Этот процесс называется атомным рассеянием. Он наиболее важен при образовании фраунгоферовых линий. Поэтому по их интенсивности можно судить о количестве рассеивающих атомов в атмосфере. Самая сильная линия солнечного спектра находится в далекой ультрафиолетовой области. Это - резонансная линия водорода La (Лайман-альфа) с длиной волны 1216 Å (рис. 124). В видимой области наиболее интенсивны резонансные линии H и К ионизованного кальция (см. рис. 123). После них по интенсивности идут первые линии бальмеровской серии водорода Нa , Hb , Нg , затем резонансные линии натрия D1 и D2 , линии магния, железа, титана и других элементов (см. рис. 123). Остальные многочисленные линии отождествляются со спектрами примерно 70 известных химических элементов из таблицы Д.И. Менделеева и хорошо изученных в лаборатории. Присутствие этих линий в спектре Солнца свидетельствует о наличии в солнечной атмосфере соответствующих элементов. Таким путем установлено присутствие на Солнце водорода, гелия, азота, углерода, кислорода, магния, натрия, кальция, железа и многих других элементов. Для количественного определения содержания различных химических элементов на Солнце необходимо применить метод, описанный в § 109. Результаты показывают, что вещество Солнца имеет тот же химический состав, что и другие космические объекты (кроме Земли и других планет), среднее содержание элементов в которых приведено в табл. 3. Преобладающим элементом на Солнце является водород. По числу атомов его примерно в 10 раз больше, чем всех остальных элементов, и на его долю приходится около 70% всей массы Солнца (водород - самый легкий элемент). Следующим по содержанию элементом является гелий - около 29% массы Солнца. На остальные элементы, вместе взятые, приходится чуть больше 1%. В некоторых случаях важно знать содержание элементов, обладающих определенными свойствами. Так, например, общее количество атомов металлов в атмосфере Солнца почти в 10 000 раз меньше, чем атомов водорода.
§ 118. Солнечная постоянная и ее измерение
Для многих задач астрофизики и геофизики важно знать точную величину мощности солнечного излучения. Поток излучения от Солнца принято характеризовать так называемой солнечной постоянной, под которой понимают полное количество солнечной энергии, проходящей за 1 минуту через перпендикулярную к лучам площадку в 1 см2, расположенную на среднем расстоянии Земли от Солнца. Согласно большому количеству измерений, значение солнечной постоянной Q в настоящее время известно с точностью до 1 %: Q = 1,95 кал/см2× мин = 1,36 ×106 эрг/см2× сек = 1360 вт/м2. Умножая эту величину на площадь сферы с радиусом в 1 а.е., получим полное количество энергии, излучаемой Солнцем по всем направлениям в единицу времени, т.е. его интегральную светимость, равную 3,8×1033 эрг/сек. Единица поверхности Солнца (1 см2 ) излучает 6,28×1010 эрг/см2× сек. На основании большого числа тщательных измерений можно сказать, что интегральная светимость Солнца отличается исключительным постоянством. Если и существуют слабые колебания солнечной постоянной, то они должны быть заведомо меньше 1 %. У поверхности Земли поток солнечного излучения уменьшается из-за поглощения и рассеяния в земной атмосфере и в среднем составляет 800-900 вт/м2. Измерение солнечной постоянной - очень сложная задача, требующая проведения целой серии тщательных наблюдений с приборами двух различных типов. Приборы первого типа называются пиргелиометрами. Их задача - измерить в абсолютных энергетических единицах полное количество солнечной энергии, падающей за определенное время на площадку известной величины. Однако показание пиргелиометра не дает еще непосредственного значения солнечной постоянной из-за того, что часть излучения Солнца поглощается при прохождении сквозь земную атмосферу. Чтобы учесть это поглощение, одновременно с измерениями на пиргелиометре проводят серию измерений распределения энергии в спектре Солнца на другом приборе - спектроболометре, обладающем одинаковой чувствительностью к лучам различных длин волн. Эти измерения проводятся для нескольких значений зенитных расстояний Солнца, когда его лучи проходят сквозь различную толщину слоя воздуха. Для каждой длины волны можно построить в виде графика зависимость интенсивности солнечного излучения от воздушной массы (рис. 126). Воздушной массой называется отношение оптической толщины слоя воздуха в данном направлении и в направлении на зенит. Из геометрических соображений (рис. 127) видно, что для плоскопараллельных слоев атмосферы воздушная масса пропорциональна секансу зенитного расстояния (sec z).
Продолжая (экстраполируя) график, изображенный на рис. 126, до оси ординат (пунктирная линия), получаем интенсивность, какую имело бы излучение, если бы воздушная масса равнялась нулю. Это и есть искомое значение интенсивности, не искаженное поглощением в земной атмосфере. Выполняя эту операцию для всех участков спектра, можно записанное спектроболометром распределение энергии в спектре Солнца (рис. 128) исправить и учесть поглощение, вызванное прохождением сквозь земную атмосферу.
В отличие от пиргелиометра, спектроболометр дает значения интенсивности только в относительных единицах. Поэтому описанным способом можно найти лишь отношение наблюдаемого и внеатмосферного значений интенсивности. Площадь, ограничиваемая кривой распределения энергии и осью абсцисс (см. рис. 128), пропорциональна полной энергии, излучаемой во всем спектре. Поэтому отношение площадей, ограниченных внеатмосферным и наблюдаемым распределением энергии, равно тому поправочному множителю, на который необходимо умножить показание пиргелиометра, чтобы получить истинное значение солнечной постоянной. К полученному результату следует прибавить небольшую поправку, учитывающую излучение в областях спектра, полностью поглощаемых земной атмосферой и, следовательно, не регистрируемых болометром. Это излучение расположено в ультрафиолетовой и инфракрасной областях спектра и может быть измерено по наблюдениям с ракет, искусственных спутников или баллонов. Заатмосферные наблюдения позволяют сразу получить истинное значение солнечной постоянной, так что необходимость применения описанной методики в последние годы постепенно отпадает.