69570.fb2
новых технических решений. Если ротор обычной машины делают из цельной поковки
магнитопроводящей стали, то в данном случае он должен состоять из нескольких
вставленных один в другой цилиндров, изготовленных из стали немагнитной. Между
стенками одних цилиндров находится жидкий гелий, между стенками других создан
вакуум. Стенки цилиндров, естественно, должны обладать высокой механической
прочностью, быть вакуумно-плотными.
Масса нового турбогенератора, так же как масса его предшественника, почти в 2
раза меньше массы обычного той же мощности, а КПД увеличен еще на 0,5…0,7 %.
Турбогенератор "живет" около 30 лет и большую часть времени находился в работе,
поэтому совершенно очевидно, что такое, казалось бы, небольшое увеличение КПД
будет весьма солидным выигрышем.
Энергетикам нужны не только холодные генераторы. Уже изготовлено и испытано
несколько десятков сверхпроводящих трансформаторов (первый из них построен
американцем Мак-Фи в 1961 г.; трансформатор работал на уровне 15 кВт). Имеются
проекты сверхпроводящих трансформаторов на мощность до 1 млн. кВт. При
достаточно больших мощностях сверхпроводящие трансформаторы будут легче обычных
на 40…50 % при примерно одинаковых с обычными трансформаторами потерях мощности
(в этих расчетах учитывалась и мощность ожижителя).
У сверхпроводящих трансформаторов, однако, есть и существенные недостатки. Они
связаны с необходимостью защиты трансформатора от выхода его из сверхпроводящего
состояния при перегрузках, коротких замыканиях, перегревах, когда магнитное
поле, ток или температура могут достичь критических значений.
Если трансформатор при этом не разрушится, то потребуется несколько часов, чтобы
снова охладить его и восстановить сверхпроводимость. В ряде случаев такой
перерыв в электроснабжении неприемлем. Поэтому, прежде чем говорить о массовом
изготовлении сверхпроводящих трансформаторов, необходимо разработать меры защиты
от аварийных режимов и возможности обеспечения потребителей электроэнергией во
время простоев сверхпроводящего трансформатора. Достигнутые в этой области
успехи позволяют думать, что в ближайшем будущем проблема защиты сверхпроводящих
трансформаторов будет решена, и они займут свое место на электростанциях.
В последние годы становится все более близкой к осуществлению мечта о
сверхпроводящих линиях электропередачи. Все возрастающая потребность в
электроэнергии делает очень привлекательной передачу большой мощности на большие
расстояния. Советские ученые убедительно показали перспективность
сверхпроводящих линий передачи. Стоимость линий будет сопоставима со стоимостью
обычных воздушных линий передачи электроэнергии (стоимость сверхпроводника, если
учесть высокое значение критической плотности его тока по сравнению с
экономически целесообразной плотностью тока в медных или алюминиевых проводах,
невелика) и ниже стоимости кабельных линий.
Осуществлять сверхпроводниковые линии электропередачи предполагается так: между
конечными пунктами передачи в земле прокладывается трубопровод с жидким азотом.
Внутри этого трубопровода располагается трубопровод с жидким гелием. Гелий и
азот протекают по трубопроводам вследствие создания между исходным и конечным
пунктами разности давлений. Таким образом, ожижительно-насосные станции будут
лишь на концах линии.
Жидкий азот можно использовать одновременно и в качестве диэлектрика. Гелиевый
трубопровод поддерживается внутри азотного диэлектрическими стойками (у
большинства изоляторов диэлектрические свойства при низких температурах
улучшаются). Гелиевый трубопровод имеет вакуумную изоляцию. Внутренняя