69570.fb2 Магнит за три тысячелетия (4-е изд., перераб. и доп.) - читать онлайн бесплатно полную версию книги . Страница 78

Магнит за три тысячелетия (4-е изд., перераб. и доп.) - читать онлайн бесплатно полную версию книги . Страница 78

В.И.Векслеру было проще с молодежью, которая только вырабатывала свой стиль

работы.

Идея автофазировки понравилась Л.Н.Мандельштамму, статьи В.И.Векслера были

молниеносно переведены на английский язык (несколько позже аналогичное

предложение выдвинул американец Э.М.Макмиллан).

Наконец-то Лоуренс смог возобновить работы на заброшенном циклотроне, и уже

через несколько месяцев на нем были получены частицы с энергией 500 (!) МэВ. По

это был уже не циклотрон, а совершенно новая машина — синхроциклотрон.

Однако, прежде чем перейти к описанию этой повой машины, обратимся к некоторым

физическим явлениям, лежащим в основе процесса ускорения заряженных частиц.

Лоуренс первым использовал магнитное ноле для возвращения частиц к одним и тем

же ускоряющим промежуткам. Известно, что любая заряженная частица, двигаясь в

магнитном поле, будет двигаться по окружности. В двух точках такой окружности

Лоуренс расположил ускоряющие промежутки. Вот для этого Лоуренсу и понадобился

старый магнит, завалявшийся на складе Калифорнийского университета.

С ростом энергии частиц, получаемых в ускорителе, увеличивается радиус орбит, по

которым вращаются частицы, а вместе с ним и диаметр магнитов. Поэтому-то самые

большие магниты в мире — это магниты ускорителей.

Заряженная частица подвержена в циклотроне влиянию двух сил: центробежной,

которая стремится "выбросить" частицу из циклотрона, и центростремительной

лоренцевой силы, которая заставляет частицу двигаться по окружности. Если в

какой-то точке орбиты напряженность, скажем, резко падает до нуля, частица в

этой точке, не сдерживаемая лоренцевой центростремительной силой, выскочит из

циклотрона.

Исходя из этих соображений, напряженность поля по орбите циклотрона

устанавливают строго постоянной. Равенство центробежной и центростремительной

сил на равновесной орбите обеспечивает так называемую горизонтальную

устойчивость частицы. Что это значит? Предположим, что частица под влиянием

каких-либо сил перешла с равновесной орбиты на орбиту большего радиуса. В этом

случае лоренцева центростремительная сила будет больше центробежной, и в

результате частица начнет смещаться в сторону орбиты меньшего радиуса до тех

пор, пока не достигнет равновесной орбиты. При уменьшении радиуса орбиты частицы

наблюдается обратная картина.

А что случится, если частица перейдет на более низкую или более высокую орбиту?

Если полюсные наконечники магнита параллельны друг другу и магнитные силовые

линии, которые должны быть перпендикулярны к стальным поверхностям, представляют

собой параллельные прямые, то при смещении орбиты вверх или вниз частица не

"заметит" каких-либо изменений в магнитном поле. Все орбиты — средняя, более

низкая и более высокая — будут для частицы равноценными, что приведет в конце

концов вследствие неидеальности изготовления поверхностей полюсов к тому, что

частицы "потеряются" в полюсах магнита.

Чтобы этого не произошло или, как говорят, для обеспечения "вертикальной

устойчивости" или "вертикальной фокусировки" движения частицы, полюсы магнитов

скашивают так, чтобы зазор к краю полюса становился больше. В действительности,

однако, скашивают не сами полюсы, а магнитные крышки вакуумной камеры, в которой

происходит ускорение.

В этом случае поле магнита ускорителя изменится: если непосредственно под

центром полюса силовые линии по-прежнему будут прямыми, перпендикулярными

плоскостям полюсов, то на внешнем крае полюса силовые линии будут выгибаться

наружу, образуя так называемое бочкообразное выпучивание силовых линий.