69570.fb2 Магнит за три тысячелетия (4-е изд., перераб. и доп.) - читать онлайн бесплатно полную версию книги . Страница 91

Магнит за три тысячелетия (4-е изд., перераб. и доп.) - читать онлайн бесплатно полную версию книги . Страница 91

была бы одинаковой, и все силовые линии оказались бы в равных условиях: каждая

силовая линия, сделав виток по поверхности тора, не попадала бы в прежнюю точку,

а образовывала бы поверхность, называемую магнитной поверхностью.

Такого эффекта можно было бы достичь, изгибая силовые линии вокруг оси тора. В

этом случае силовые линии имели бы примерно такую же форму, как отдельные нити

крученой веревки. Во вращательно-преобразованном магнитном поле дрейф частиц

свелся бы к минимуму.

Частицы, быстро движущиеся вдоль силовых линий и таким образом все время

огибающие ось камеры, не могут упасть на нижнюю или верхнюю стенку. Когда

частица, дрейфующая вверх, находится ниже оси, она, естественно, стремится

отодвинуться от нее; когда же частица находится внизу, тот же самый дрейф вверх

компенсирует прежнее смещение, подвигая ее к оси. В результате среднее

расстояние частицы от оси остается неизменным. Подобная система использована в

стеллараторе, построенном в США. Его камера в плане имеет вид гаревой дорожки

стадиона. Внутренний радиус камеры 20 см, длина по оси 12 м, индукция магнитного

поля около 5 Тл. Мощность питающей электроустановки 15 тыс. кВт.

Остроумный способ "вращательного преобразования" или "свисания" магнитных

силовых линий был предложен американским физиком Л.Спитцером и советским физиком

академиком Л.А.Арцимовичем.

Мы уже говорили о том, что обычное "нескрученное" продольное магнитное поле

обладает неоднородностью, приводящей к тому, что отрицательные частицы врезаются

в "пол", а положительные — в "потолок" камеры. А что, если, оставив одну

половину тора неизменной, перепутать "пол" и "потолок" в другой половине или,

короче говоря, превратить тор-бублик в восьмерку? Тогда, начав падать в одной

половине бывшего тора, частица должна будет "падать вверх" на другой его

половине и, таким образом, в среднем останется на одном расстоянии от оси

камеры.

Если оценить тороидальные камеры типа стелларатора с винтовой обмоткой,

преобразованные в восьмерку, то можно сделать вывод о том, что стеллараторы —

это весьма совершенные магнитные системы для удержания плазмы. Их недостаток —

трудность изготовления и дороговизна.

А нельзя ли для удержания плазмы в магнитном поле использовать магнитное поле

самой плазмы? Если в плазме есть какое-то упорядоченное движение заряженных

частиц в одну сторону, то это означает, что плазма представляет собой гибкий

шнур с электрическим током, так как, по определению, электрический ток — это и

есть упорядоченное движение заряженных частиц.

Ток создает вокруг себя магнитное поле, силовые линии которого опоясывают

провод, по которому этот ток проходит. Одним из важных свойств силовых линий

является их стремление идти по кратчайшему пути, их упругость, максвелловское

натяжение, приводящее к тому, что силовые линии стремятся сжать опоясываемый ими

проводник с током. В случае обычных медных проводов упругость силовых линий не

может привести к уменьшению диаметра проводов, поскольку кристаллическую решетку

твердых тел деформировать довольно трудно. Если ток течет по плазменному шнуру,

то упругость силовых линий, охватывающих этот шнур, приводит к тому, что шнур

уменьшается в сечении и отходит от стенок камеры. Это явление, получившее

название пинч-эффекта, казалось бы, полностью решает задачу магнитной

термоизоляции плазмы: стоит "организовать" в плазме ток, как она сама отойдет от

его стенок и сожмется в тонкий шнур в середине сосуда.

Однако здесь начинает действовать свойство заряженных частиц (и, следовательно,

плазмы в целом) выталкиваться в область с более слабым полем, туда, где меньше