69570.fb2 Магнит за три тысячелетия (4-е изд., перераб. и доп.) - читать онлайн бесплатно полную версию книги . Страница 93

Магнит за три тысячелетия (4-е изд., перераб. и доп.) - читать онлайн бесплатно полную версию книги . Страница 93

трансформаторной сталью.

Если на первичную обмотку такого трансформатора дать мощный импульс тока от

конденсаторной батареи, то во вторичном газовом витке также возникнет

электрический ток. Этот ток проходит по газу, разогревает его до высокой

температуры, превращая в плазму. Плазменный шнур под влиянием тока сжимается и

отрывается от стенок.

Сходные конструкции имели и другие первые американские экспериментальные

установки: "Спектр", "Альфа" и "Пихэпетрон". На них были проведены

многочисленные эксперименты, результаты которых, однако, не оправдали надежд.

Выяснилось, что стабилизирующее продольное поле, вопреки первоначальным

прогнозам, было мало для того, чтобы сделать плазменный шнур устойчивым к

разного рода случайным возмущениям. Продольное магнитное поле по отношению к

собственному полю плазмы было слишком мало. Упругие жгуты внутри пружины

оказались слабыми для удержания ее от аварийных изгибов.

Чтобы обойти эту трудность, необходимо было резко увеличить продольное поле и

ослабить собственное поле шнура. Эта задача была решена советскими учеными на

установках типа токамак. Для создания сильного продольного поля в системе

использованы мощные соленоиды, которые приходилось питать от мощных импульсных

генераторов, используемых обычно для возбуждения синхротронов. Хотя магнитное

поле, создаваемое такими системами, импульсное (продолжительность импульса

примерно 0,2 с), оно в сотни раз превосходит по длительности время разряда и для

него является практически постоянным. Магнитное поле установок типа токамак

достигает 3,5…5 Тл, т. е. в сотни раз превышает поле установок типа "Альфа".

А как не допустить уменьшения радиуса шнура при линч-эффекте? Ведь при

уменьшении радиуса возрастает собственное поле шнура, и те преимущества, которые

достигнуты применением мощного продольного поля, сводятся к нулю. Однако если

поле шнура мало, то шнур останется слишком широким. Он будет касаться стенок

камеры и охлаждаться. Для преодоления этого явления конструкторы установок типа

токамак решили применить в тороидальной камере диафрагмы с небольшими по

сравнению с диаметром камеры отверстиями. Эксперименты показали, что эта

конструкция обеспечивает образование шнура с сечением, ограниченным размерами

отверстий диафрагм. В установке "Токамак-3", пущенной в Институте атомной

энергии имени И.В.Курчатова в 1962 г., отверстие диафрагмы имело диаметр 20 см,

диаметр поперечного сечения тора 40 см, диаметр внешнего кожуха 50 см, диаметр

тора 2 м. Продольное магнитное поле до 4 Тл создавали восемь катушек с внешним

диаметром около 1 м. Каждая катушка — это монолит из 352 медных витков,

запеченных в эпоксидной смоле. Питание катушек производилось от ударного, т. е.

кратковременно действующего, генератора мощностью около 75 тыс. кВт. В 1964 г.

пущена усовершенствованная установка "Токамак-5", в которой осуществлено

автоматическое управление положением плазменного шнура внутри камеры.

В 1975 г. вошла в строй установка "Токамак-10", обладающая рекордными,

чрезвычайно обнадеживающими характеристиками. Дальнейшее развитие привело к

разработке токамаков, обладающих параметрами, удовлетворяющими "критерию

Лоусона". В принципе на этих токамаках мы вступим, по выражению академика

Л.А.Арцимовича, в "термоядерное Эльдорадо". И все же нельзя забывать о том, о

чем говорил Л.А.Арцимович. Он часто подчеркивал, что еще в 1958 г. на II

Международной конференции по мирному использованию атомной энергии в Женеве,

казалось, что до осуществления термоядерного синтеза рукой подать — нужно пройти

небольшей путь между двумя точками; потом оказалось, что надо не пройти, а

проехать на велосипеде; потом — что проехать на велосипеде, но по канату; потом