70400.fb2
Рассчитать, сколько лет каждому, нетрудно. Ясно, что сын старше внука в семь раз, а дед — в 12 раз. Если бы внуку был один год, сыну было бы семь лет, деду — 12 лет, а всем троим вместе — 20 лет. Это ровно в 5 раз меньше, чем на самом деле. Значит, в действительности внуку 5 лет, сыну — 35 и деду — 60 лет.
Проверим: 5 + 35 + 60 = 100.
Всех детей семь: шесть сыновей и одна дочь. (Обычно же отвечают, что детей 12; но тогда у каждого сына было бы шесть сестер, а не одна.)
Через 10 суток и 1 день. За 10 суток улитка поднимется на 10 метров, по 1 метру в сутки; в течение же следующего дня она всползет еще на 5 метров, т. е. достигнет верхушки дерева. (Обыкновенно неправильно отвечают: «через 15 суток».)
Ни брат, ни сестра не старше: они близнецы, и каждому из них по шесть лет. Действительно: (6 + 2): (6–2) = 2; (6 + 3): (6–3) = 3. Возраст находят простым расчетом: через два года мальчик будет на четыре года старше, чем два года назад, и притом вдвое старше; значит, четыре года — это возраст его два года назад, и следовательно, сейчас ему 4 + 2 = 6 лет. Таков же и возраст девочки.
Крестьянин ничего не выгадал, а потерял. На вторую половину дороги он употребил столько времени, сколько отняло бы у него все путешествие в город пешком. Значит, он выгадать во времени не может, а должен потерять. Потерял он 15-ю долю того времени, какое нужно, чтобы пройти пешком половину дороги.
Дело объясняется очень просто. Село за стол не четверо, а только трое: дед, его сын и внук. Дед и сын — отцы, а сын и внук — сыновья: дед — отец сына, внук — сын отца.
Часто отвечают: в 1,5 × 5, т. е. в 7,5 минуты. При этом забывают, что последний разрез даст два метровых обрубка. Значит, распиливать пятиметровое бревно поперек придется не пять, а четыре раза; на это уйдет всего 1,5 × 4 = 6 минут.
Всех семеро: четыре брата и три сестры. У каждого брата три брата и три сестры; у каждой сестры — четыре брата и две сестры.
Эта старинная народная задача решается так. Спросим себя: на сколько больше галок для заполнения мест на палках нужно было бы иметь во второй раз? Легко сообразить: в первом случае для одной галки не хватило места, во втором же сидели все галки и еще двух не хватило. Значит, чтобы занять все палки, нужно во второй раз иметь на 1 + 2, т. е. на три галки больше, чем в первый. Садится же на каждую палку на одну птицу больше. Ясно, что всех палок было три. Посадим на каждую палку по галке и прибавим еще одну — получим число птиц: 4.
Итак, вот ответ на вопрос задачи: четыре галки, три палки.
Из того, что передача одного яблока уравнивает их количество у обоих школьников, следует, что у одного на два яблока больше, чем у другого.
Если от меньшего числа отнять одно яблоко и прибавить к большему числу, то разница увеличится еще на два и станет равна четырем. Мы знаем, что тогда большее число будет равно двойному меньшему. Значит, меньшее число тогда будет 4, а большее 8. До передачи одного яблока у одного школьника было 8–1 = 7, а у другого 4+1 = 5.
Проверим, становятся ли числа равными, если от большего отнять одно яблоко и прибавить к меньшему:
7 — 1 = 6; 5 + 1 = 6.
Итак, у одного школьника было 7 яблок, а у другого — 5.
Вы, вероятно, решили, что пряжка стоит 8 копеек. Если так, то вы ошиблись. Ведь тогда пояс был бы дороже пряжки не на 60 копеек, а всего на 52 копейки.
Правильный ответ: цена пряжки 4 копейки. Тогда пояс стоит 68 — 4 = 64 копейки, т. е. на 60 копеек дороже пряжки.
Среди школьников наверняка имеются даже не двое, а целые десятки ребят с одинаковым количеством волос. Это следует из того, что число всех школьников больше, чем число волос на голове каждого из них. Школьников с различным числом волос может быть не более двухсот тысяч.
Сколько же волос у двести тысяч первого школьника? Конечно, одно из тех чисел, какое уже насчитывалось у кого-нибудь из первых двухсот тысяч школьников.
Сравнивая первую и третью полку, мы замечаем, что они отличаются друг от друга следующим: на третьей полке один лишний сосуд среднего размера, зато нет трех малых сосудов. А так как общая вместимость сосудов каждой полки одинакова, то, очевидно, вместимость одного среднего сосуда равна вместимости трех малых. Итак, средний сосуд вмещает три стакана.
Теперь остается определить вместимость большого сосуда. Заменив на первой полке средние сосуды соответствующим числом стаканов, мы получаем один большой сосуд и двенадцать стаканов. Сравнив это со второй полкой, соображаем, что один большой сосуд вмещает шесть стаканов.
Значит, фигура заключает 55 различно расположенных квадратов пяти различных размеров.
В тот же день Алеша убедиться в этом никак не мог. Даже если бы он считал круглые сутки беспрерывно, то и тогда насчитал бы в одни сутки только 86 400 клеточек. Ведь в 24 часах всего 86 400 секунд. Ему надо было бы считать без перерывов более десяти дней, а по восемь часов в сутки — целый месяц, чтобы досчитать до миллиона.
Яблоки были разделены таким образом. Три яблока разрезаны были каждое пополам; получилось шесть половинок, которые и роздали ребятам. Остальные два яблока разрезали каждое на три равные доли; получилось шесть третьих долей, которые тоже роздали ребятам. Каждому мальчику было дано, значит, по одной половине и по одной третьей доли яблока, т. е. все получили поровну.
Как видите, ни одно яблоко не было разрезано больше, чем на три равные части.
Задача решается довольно легко, если сообразить, что в 21 купленной бочке было меду 7 + З1/2, т. е. 101/2 бочки. Значит, каждый магазин должен получить 81/2 бочки меду и 7 бочек тары. Выполнить дележ можно двояко. По одному способу магазины получают:
По другому способу магазины получают:
Эта задача имеет только одно решение.
Гражданин купил:
50-копеечных марок……1 штуку
10-копеечных марок……..39 штук
1-копеечных»……..60»
Действительно:
всех марок 1 + 39 + 60 = 100 штук.
А стоят они:
50 + 390 + 60 = 500 копеек.
Задача имеет четыре решения. Вот они:
Нетрудно понять, что 3/4 котенка есть четвертая доля всех котят. Значит, всех котят было вчетверо больше, чем 3/4, т. е. три. Действительно, 3/4 от трех составляет 21/4, и остается 3/4 котенка.
Очевидно, крестьянка принесла на базар нечетное количество яиц: тогда половина всех яиц состояла из нецелого числа, а прибавка 1/2 яйца превращала число в целое. Что же это было за число? Начнем с конца. После того как вторая покупательница взяла половину оставшихся яиц и еще половину яйца, у крестьянки оказалось только одно яйцо. Значит, одно яйцо и еще 1/2 яйца составляют вторую половину того, что осталось после первой покупательницы. Отсюда узнаем, что после первой покупательницы осталось 11/2 + 11/2, т. е. 3 яйца. Прибавив 1/2 яйца, получаем половину всего числа яиц, бывших у крестьянки. Итак, крестьянка принесла на базар З1/2 + З1/2 = 7 яиц.
Прохожий подсчитал выручку неверно. Он принимал, что первая крестьянка продала столько же пар яиц, сколько вторая — троек: тогда средняя цена действительно была бы 10 копеек за пять штук, или две копейки штука. Но на самом деле первая продала 15 пар, вторая же — всего 10 троек. Дорогих яиц продано было больше, чем дешевых, и средняя цена была выше двух копеек за штуку. Истинная выручка равна:
Если часы делают в три секунды три удара, т. е. если два промежутка между ударами длятся три секунды, то продолжительность одного промежутка — 1/2 секунды. При семи ударах имеется шесть промежутков. Считая по 1/2 секунды на каждый промежуток, имеем, что семь ударов часы должны делать за 6 × 11/2 = 9 секунд.
Соображаем:
четыре кошки и три котенка весят 15 килограммов,
три кошки и четыре котенка весят 13 килограммов.
Значит, семь кошек и семь котят весят 28 килограммов. Отсюда узнаем вес одной взрослой кошки вместе с одним котенком — 4 килограмма. Теперь узнаем, сколько весят 4 кошки и четыре котенка: умножив четыре килограмма на четыре, получаем 16 килограммов.
Сопоставляем:
четыре кошки и три котенка весят 15 килограммов,
четыре кошки и четыре котенка весят 16 килограммов.
Ясно, что котенок весит 1 килограмм, а вес взрослой кошки — 3 килограмма.