70881.fb2
"Когда я летел из Ла-Гуардия над долиной Гудзона, мне довелось увидеть совершенно поразительный мираж. В районе холмов Кэтскиллз возвышалась горная гряда, которая могла бы поспорить с Гималаями. У меня на глазах появлялись и снова исчезали гигантские U-образные каньоны, вырастали зазубренные вершины гор... Радиозондирование обнаружило на высоте около 4 тысяч футов сильную температурную инверсию и слой очень сухого воздуха".
Чарльз Линдберг во время своего знаменитого перелета в Париж в 1927 году увидел поднятое миражем побережье Ирландии на несколько часов раньше, чем он должен был его увидеть.
Таким образом, имеется множество фактов, свидетельствующих о том, что преломление света часто вводило нас в заблуждение. Иногда мираж поднимает некоторые участки земли высоко в небо. Если эти участки темные, то на фоне заката они покажутся черными островами, ибо для миража всегда характерна сигарообразная форма. Нередко отдельные светящиеся области над Землей (например, туман над далеким городом, пронизанный ярким светом, или вздымающиеся массы кучевых облаков, озаренные заходящим Солнцем) могут быть подняты ввысь и их изображение появится где-нибудь за много сотен миль от того места, где они в действительности находятся. Когда небо темное, мы теряем всякое чувство перспективы и можем легко вообразить, что такой предмет совсем близко от нас, поскольку его размеры моментально меняются при малейшем нашем передвижении.
Простой мираж - это далеко не единственное явление, которое могут наблюдать летчики. В результате отражения и преломления в земной атмосфере облаков, принимающих порой самую причудливую форму, возникают всевозможные удивительные картины, которые наш глаз не всегда может правильно истолковать.
Я уже говорил о том, как нагретая поверхность пустыни вызывает днем нижний мираж. Все обитатели пустынь Нью-Мексико или Аризоны могут подтвердить, что земля быстро охлаждается после захода Солнца. Слой воздуха, расположенный у самой поверхности, охлаждается быстрее, нежели верхние слои атмосферы. Возникает температурная инверсия, которая сохраняется всю ночь. Следовательно, там, где днем появляются нижние миражи, ночью можно наблюдать верхние миражи.
Так, на небе вдруг вспыхивают огни далеких городов, автомобильные фары или прожектора (фиг. 51). Естественный астигматизм воздушных линз придает световому пучку характерную сигарообразную форму. Обычно такие изображения появляются низко над самым горизонтом. Но если в воздухе имеется непрозрачный слой, отражение от него может быть очень сильным.
Тонкие слои пыли или дыма часто связаны с некоторыми случаями температурной инверсии. Дым, идущий из трубы, сначала поднимается вертикально вверх, а потом плывет в горизонтальном направлении, образуя непрозрачный слой на высоте, где температура достигает минимальной величины, ниже области инверсии.
Во время второй мировой войны я был заместителем председателя, а потом председателем Комитета по вопросам распространения радиоволн при Объединенном комитете начальников штабов; комитет этот проводил некоторые эксперименты на юго-западе. В этих исследованиях использовалась ночная температурная инверсия пустыни, чтобы показать, что радарные волны, так же как и световые, могут образовывать миражи. Более подробно я расскажу об этом в главе 19. А пока мне хочется подчеркнуть, что температурная инверсия в засушливых районах уже давно была хорошо известна.
Я попытался проверить экспериментально некоторые из этих теорий в своей лаборатории. Поскольку контролировать столь большие объемы воздуха, чтобы они могли вызвать соответствующее преломление и искажение, дело довольно трудное, я воспользовался жидкостью, которая заменила мне несколько кубических миль воздуха. Я наполнил стеклянную банку до половины бензином, а сверху осторожно налил слой ацетона. Бензин, обладая высоким показателем преломления, действует, как холодный воздух, а ацетон - как теплый воздух. Область, где они смешиваются, представляет собой температурную инверсию.
Возникший мираж ясно виден на фиг. 52; обратите внимание на деревья, растущие как вверх, так и вниз. Искаженное изображение прямой стеклянной палочки (фиг. 53) свидетельствует об изменениях показателя преломления жидкости; о том же свидетельствует и мираж лица автора (фиг. 54): прямые изображения чередуются с перевернутыми, одни из них видны очень отчетливо, а другие сильно искажены.
Пропуская световой пучок через банку с бензином и ацетоном, я получал на экране изображения летающих тарелок (фиг. 55). Малейшее колебание жидкости в банке вызывало движение тарелок. Отражение нескольких источников света породило лаббокский световой эффект, изображенный на фиг. 6 и 7 (стр. 47 и 49).
Можно воспользоваться и более простым устройством, хотя оно не столь реалистично воссоздает этот эффект; отражение от поверхности воды заменяет внутреннее преломление. Наполните водой кухонную раковину. Поместите какой-нибудь источник света как можно ближе к воде и, наклонив голову к самой ее поверхности, смотрите на отражение. Потом помешайте воду ложкой, и отраженные пучки света запрыгают словно летающие тарелки. Этот же опыт в миниатюре можно повторить в чашке кофе, как показано на фиг. 56. Отражение спички в колеблющейся поверхности жидкости создает световое пятно, нередко напоминающее тарелку.
Хотя наиболее значительны горизонтальные искажежения, порой появляются и вертикальные: взаимодействуя, они могут вызывать явления, близкие к летающим тарелкам. Все мы замечали, что иногда звезды мерцают сильнее, а иногда слабее. Хотя целиком Солнце как будто и не мерцает, в большой телескоп часто бывает видно, что каждая частица его поверхности мерцает самостоятельно. Это особенно заметно во время полного солнечного затмения, когда весь солнечный диск закрыт, за исключением, одного или двух маленьких пятнышек, которые сверкают, как капли расплавленного серебра. Если наблюдатель смотрит в этот момент на белый лист бумаги или снежный сугроб, он может заметить быстро меняющийся рисунок из темных и светлых полос (так называемые теневые полосы).
Атмосферные волны, которые создают теневые полосы и заставляют звезды мерцать, обладают наибольшей интенсивностью на границе между слоями холодного и теплого воздуха. Поскольку эти слои имеют разные показатели преломления, изображение предметов, наблюдаемых через волнистую поверхность, оказывается искаженным. Эти искажения могут, по крайней мере теоретически, быть еще больше, если холодный слой воздуха расположен над теплым. Метеорологический шар, преодолев верхнюю границу инверсии, поднимает с собой пузырек теплого воздуха. Расположенный выше холодный слой прогнется вниз и будет действовать как огромная линза, проектирующая на Землю все, что происходит над ней. Таким образом может появиться искаженное изображение метеорологического шара (фиг. 57).
Насколько я понимаю, это может объяснить появление странного шара, о котором я упоминаю в главе 3; судя по сообщениям, эта таинственная сосискообразная тарелка шныряла вокруг нашего экспериментального шара. Я слышал, что подобные же призраки сопровождали и ракеты ФАУ-2 во время их взлета. Это вполне естественное явление, и с точки зрения оптики в нем нет ничего удивительного. Расчеты показывают, что известная нам температурная разница между двумя слоями воздуха вполне могла вызвать данньга эффект.
Если поклонники летающих тарелок думают, что их представление о Вселенной, населенной существами с других планет, хотя сколько-нибудь ново, то мне придется привести им некоторые мысли, возникшие у Фонвиелля еще в 1867 году, когда он летал на воздушном шаре.
Когда шар поднялся на большую высоту, Фонвиелл мог видеть Луну гораздо более отчетливо, чем с Земли. Он рассматривал ее поверхность в телескоп и видел огромные кратеры и горы, вершины которых "...сверкали, словно жемчужные ожерелья. Покрыты ли они вечными снегами или это девственные утесы, которых никогда не увлажняла вода? Я не знаю, какие существа обитают в этом мире, который наша Земля словно приковала к себе; однако ни Фурье, ни вся французская академия не убедят меня в том, что это просто пустыня, безжизненный шар, покорно следующий за нами через мировое пространство. Кто знает, быть может, на Луне обитает раса более разумных существ, чем мы сами, и когда нибудь они завоюют нас, как Колумб завоевал индейцев в Южной Америке? Правда ли, что Луна действует на наш рассудок сильное, чем на воды океана? Правда ли, что Луна туманит наш разум и светлые надежды влюбленных так же, как сегодня ночью она прячет от нашего взора потоки метеоров? Нет, давайте изгоним из наших мыслей эти жалкие суеверия и будем смело созерцать ее мягкое белое сияние!"
СЕВЕРНОЕ СИЯНИЕ
Немного найдется небесных явлений, которые вызывали бы такое восхищение и изумление, как северное сияние. Пожалуй, одни лишь эскимосы да обитатели Скандинавии смотрят на это явление как на нечто обычное. Уже само название "северное сияние" указывает на то, что оно чаще всего происходит на крайнем севере. В нашем представлении охваченные пламенем небеса обычно ассоциируются с сильным морозом и снежными просторами Арктики, однако изредка северные сияния бывают и в более теплых широтах. В прошлом эти неожиданные вспышки света наряду с другими небесными явлениями тоже пугали народ. Указание на связь большой тарелки 1882 года, о которой я уже писал раньше, с полярными сияниями позволяет нам подробно рассмотреть здесь это явление. Хотя у нас нет никаких данных, что полярные сияния имеют какое-то отношение к летающим тарелкам, некоторые ученые объясняют зеленую окраску огненных шаров в Нью-Мексико полярным сиянием.
Благодаря тому что на севере имеется сравнительно больше населенных пунктов, чем на юге, северное сияние пользуется большей известностью. Однако существует и его южный двойник - так называемое южное сияние, которое освещало путь знаменитому Бэрду и другим антарктическим экспедициям.
Примитивные представления людей о природе полярных сияний, как правило, были весьма далеки от истины. Эскимосы, например, считали, что пламя на небе является отражением арктических снегов, все еще озаренных солнцем, которое боги подхватили на западном горизонте и несут по северному небосводу на восток, чтобы оно вновь взошло на следующий день. Довольно забавная теория.
Впрочем, гораздо более распространенным было мнение, которого придерживались и наши предки,- что во время полярного сияния на небесах происходят такие же события, как и на Земле. Люди суеверные, да еще наделенные пылким воображением, видели войска, королей, зверей, длинные процессии, битвы и похороны, а также ангелов, дьяволов и всевозможных чудовищ, вроде Драконов, которых никогда на Земле не было.
Вот что пишет Райнцер в своей "Философско-политической метеорологии", о которой мы уже упоминали:
"У всех останется в памяти 1568 год, когда однажды светлой ночью, о чем свидетельствует Фомианус Страда, на небе встретились две армии в боевых порядках с ярко сверкающими копьями наперевес. Они то отступали, то наступали, сшибаясь щитами, и сражались так, словно новое поколение гигантов решило взять приступом небеса. Это странное явление вызвало обоснованный страх у герцога Альбы; впоследствии оказалось, что чудо было выражением небесного милосердия, предостережением свыше, направленным на то, чтобы герцог был начеку. Это знамение предвещало, как замечает историк, приближение войск принца Оранского, предвещало грабежи, резню и долгую кровопролитную войну".
Чем дальше вы находитесь от северного или южного полюса, тем реже можно наблюдать полярные сияния, однако тщательное изучение этих явлений убеждает нас в том, что максимума интенсивности они достигают не на северном и не на южном географическом полюсе.
Тщательно поставленные опыты позволили определить, что Земля представляет собой намагниченную сферу. Именно магнитное поле Земли поворачивает стрелку компаса на север и помогает путешественникам выбрать нужное направление. Однако магнитный полюс не совпадает с географическим. Он отклонен примерно на 12 град. от оси вращения Земли. Северный геомагнитный полюс, который по существу следовало бы назвать "южным", поскольку он притягивает "северный" полюс магнитной стрелки, находится в Северной Америке, возле Баффиновой земли, к северу от Гудзонова залива. Южный магнитный полюс находится в Антарктике. Однако полюса эти не имеют постоянного местоположения. Они медленно смещаются, двигаясь примерно по кругу вокруг географических полюсов.
Исследования показали, что чаще всего северные сияния происходят в узкой полосе, расположенной примерно в 23 град. от магнитного полюса. Вне этой зоны максимальной магнитной активности количество видимых полярных сияний убывает как в сторону магнитного полюса, так и в сторону экватора. В настоящее время мы, жители Северной Америки, находимся в лучших условиях для наблюдения северных сияний, чем, например, жители Центральной Европы.
Хотя формы полярных сияний столь же разнообразны, как и формы летних облаков, мы тем не менее можем разделить их на определенные типы. Все полярные сияния принадлежат к одной из двух основных форм - с лучевой или безлучевой структурой. Одной из наиболее распространенных форм является арка, которая полукольцом опоясывает северный небосвод. Одни арки просто светятся, не обладая сколько-нибудь заметной внутренней структурой, другие отбрасывают от себя множество лучей, похожих на зубья гребешка. Обычно световой рисунок медленно изменяет свою яркость и очертания, но иногда он мерцает и вспыхивает, словно пламя костра. Таким образом, имеются три основных типа арки - однородные, лучистые и пульсирующие. Когда эти арки находятся так далеко, что их самые яркие участки оказываются ниже горизонта, лишь слабое свечение неба указывает на полярное сияние. Лучи появляются по одному или пучками, иногда их яркость остается неизменной, а иногда они слабо мерцают. Нередко на небе возникают драпри, свисающие изящными складками, которые колышутся, словно занавес или длинное платье, развевающееся по ветру (фиг. 61).
Когда арки не имеют четких очертаний, небо бороздят светлые полосы, однородные или лучистые. Иногда же мы видим лишь однообразную рассеянную пульсирующую поверхность.
При очень интенсивном полярном сиянии свечение нередко достигает зенита или даже минует его и образует великолепную корону (фиг. 62). Корона обычно состоит из нескольких коротких полос, расходящихся лучами из темного центра; если бы магнитная стрелка компаса могла свободно вращаться как по горизонтали, так и по вертикали, она указала бы на этот центр. Мы называем эту точку "магнитным зенитом".
Свечение неба вызывают атомы и молекулы, находящиеся в верхних слоях земной атмосферы. Характерное зеленое свечение возникает благодаря атомам кислорода. Однако кислород при определенных условиях может придать полярному сиянию и красный оттенок. Азот, самый распространенный газ в земной атмосфере, тоже может вызвать ярко-красное свечение. Во время полярных сияний иногда наблюдается излучение самого легкого из атомов - атома водорода. Эти наблюдения указывают на то, что водород находится в земной атмосфере не в неподвижном состоянии, а движется к нам со скоростью 200, а может быть, и 2000 миль в секунду.
Благодаря широкому распространению ламп дневного света мы все хорошо знакомы со светящимся газом. Многочисленные рекламы, сияющие красным неоновым светом, сверкают так ярко потому, что электроны, проходящие через газ, с силой сталкиваются с атомами неона и вызывают их излучение.
Взрывы, происходящие на Солнце, и другие виды солнечной активности вызывают полярные сияния. Теперь мы располагаем данными об облаках водорода, движущихся с огромной скоростью от Солнца к Земле, о чем говорилось выше. Однако долгое время у нас имелись лишь косвенные данные о том, что полярные сияния связаны с деятельностью Солнца.
Стрелка компаса показывает на северный магнитный полюс. Если наш компас достаточно чувствителен, мы скоро обнаружим, что стрелка его никогда не бывает в покое. Сначала она поворачивается на восток, а потом на запад, совершая довольно регулярное движение в течение суток. Однако цикл движения, а также более мелкие колебания, связанные с ним, значительно изменяются изо дня в день. Дни, когда происходят наиболее сильные колебания магнитной стрелки, мы называем "магнитно-возмущенными". Эти сильные возмущения нередко сопровождаются полярными сияниями. Именно сильная магнитная активность заставила ученых еще в 1882 году пристально следить за северным небосклоном; об этом пишет Мондер в своем сообщении о большой группе солнечных пятен, когда огромное световое пятно, вызванное полярным сиянием, вело себя, словно летающая тарелка.
Ученые обычно делают заметки по поводу каждого такого явления природы и тщательно записывают свои наблюдения. Таким образом, у нас накопилась подробная информация о магнитной активности более чем за сто лет. Астрономы вели наблюдения и за Солнцем и не раз замечали на его поверхности темные пятна (фиг. 63). Изо дня в день, из года в год регистрировали они данные о величине и количестве солнечных пятен, и эти данные позволили установить тот удивительный факт, что пятна на Солнце появляются довольно регулярно. Большой наплыв пятен происходит не столь периодически, и его не так просто предсказать, как океанский прилив, однако мы видим, что сначала количество солнечных пятен увеличивается, а потом падает почти до нуля, пока не начинается новый цикл. Данные более чем за двести лет ясно свидетельствуют о том, что максимальное количество пятен появляется на Солнце в среднем через каждые 11 лет. Правда, бывают значительные отклонения от этой средней цифры, причем иногда интервал сокращается до 7 лет, а иногда увеличивается до 16.
Уже давным-давно было сделано одно важное наблюдение: наибольшая магнитная активность бывает при наибольшем числе солнечных пятен. С тех пор как были зарегистрированы первые данные о магнитной активности, обе кривые поднимаются и опускаются одновременно.
Киносъемка Солнца показала, что на его поверхности происходят бурные процессы. Гигантские гейзеры раскаленного светящегося газа взлетают вверх на сотни тысяч миль. Эти пылающие потоки имеют иногда от 10 тысяч до 20 тысяч миль в поперечнике и движутся со скоростью до 50 миль в секунду, а порой и больше (фиг. 64). Такие колоссальные взрывы чаще всего происходят поблизости от солнечных пятен и, возможно, как-то связаны с их возникновением. Солнечное пятно - это область бури, где температура и давление значительно ниже, чем на остальной поверхности Солнца. Поэтому пятна и представляются нам темными; поскольку они холоднее окружающей поверхности, от них исходит меньше света и тепла. Однако это не мешает им извергаться.
Из огромной массы извергнутого газа большая часть, вероятно, падает обратно на солнечную поверхность. Непрерывный ливень стремительно падающего газа представляет собой одну из самых характерных черт наблюдаемой солнечной активности. Однако часть извергнутого вещества, видимо, покидает Солнце окончательно, и какая-то его доля, очевидно, достигает Земли. Солнечные спикулы, своеобразные раскаленные струи газа, появляющиеся поблизости от полюсов, возможно, тоже играют важную роль при извержении вещества в пространство.
Изучение Солнца приобретает все более важное значение как для экономики, так и для науки. Если бы мы могли предсказывать извержения на Солнце, мы знали бы заранее, когда произойдут магнитные бури. Такие прогнозы были бы очень полезны, потому что магнитные бури имеют иногда очень серьезные последствия. Одним из главных последствий является нарушение радиосвязи, ибо полярные сияния как бы пробивают дыры в верхних слоях атмосферы, которые обычно отражают радиоволны, идущие от передатчика к далекому приемнику. Фактически во время сильной магнитной бури многие виды радиосвязи совсем выходят из строя. На любой радиостанции планировали бы свои передачи и сеансы связи гораздо целесообразнее, если бы знали заранее, когда следует ожидать нарушения радиосвязи.
Иногда выходят из строя даже наземные линии связи. В результате быстрого изменения магнитных полей может произойти резкое увеличение силы тока и размыкание реле, а телетайпы начнут передавать совершенно невразумительные сообщения. В ряде случаев эти магнитные возмущения оставляли целые районы страны без света и электрической энергии.
Как правило, облака газа, извергнутые Солнцем, рассеиваются прежде, чем успевают преодолеть хотя бы сотую долю расстояния от Солнца до Земли. Мы не можем непосредственно установить, что же происходит в промежуточной зоне, отделяющей Солнце от Земли.
Правда, во время полного солнечного затмения мы наблюдаем великолепное гало из газа, опоясывающее Солнце - солнечную корону,- и следим за движением потухающих лент огня на протяжении четырех-пяти солнечных диаметров. Отсюда мы заключаем, что газ может окончательно покинуть Солнце и, возможно, достигнет Земли через несколько часов или дней, в зависимости от скорости его движения.
Иногда на фотографиях солнечной поверхности, сделанных через специальный светофильтр, пропускающий только красное излучение водорода, появляются какие-то яркие вспышки. Они могут возникнуть в течение нескольких секунд и через несколько минут исчезнуть. Мы еще не знаем точно, что это такое, но, очевидно, это какой-то сильный взрыв. Мощный поток ультрафиолетовых лучей, сопровождающий эту вспышку, может создать сильные радиопомехи, которые, однако, несколько отличаются от помех, вызываемых облаками газа, достигающими Земли.
Помехи радиоприему, которые возникают в результате такой вспышки, называются "замиранием", или "внезапным возмущением ионосферы". Иногда я слушаю на коротких волнах передачу из какого-нибудь далекого города, скажем из Лондона. Слышимость прекрасная. И вдруг, буквально мгновенно, звук замирает. Может быть, испортился радиоприемник? Нет! Замирание происходит вследствие своеобразной электризации атмосферы, вызванной ультрафиолетовым излучением солнечной вспышки. Радиоволны поглощаются на пути от передатчика к приемнику. Некоторые из этих вспышек, которые, возможно, сопутствуют очень сильным выбросам, очевидно, также извергают солнечное вещество. Следовательно, уже через сутки или немного позже может начаться магнитная буря, а значит, и полярное сияние.
Распределение полярных сияний по земной поверхности ясно свидетельствует о том, что это явление самым тесным образом связано с магнетизмом. Первые теории полярных сияний, основанные на солнечном и земном магнетизме, возникли еще в начале девятисотых годов, когда норвежские ученые Биркеланд и Штёрмер тщательно исследовали свечение неба в лабораторных условиях, на местности и путем математических расчетов.
Штёрмер подробно разработал теорию, объясняющую, каким образом заряженная частица, скажем электрон, преодолевает расстояние от Солнца до Земли и, захваченная магнитным полем Земли, вызывает полярное сияние. Он ясно показал, как электрон движется по спиральной траектории вдоль геомагнитных силовых линий и что происходит в области полюсов. Тот мистический жаргон, на котором изъясняются лица, утверждающие, будто магнетизм служит для летающих тарелок источником энергии, был отчасти заимствован из работы Штёрмера, а потом извращен и приспособлен для "тарелочной" пропаганды.
Необходимо лишний раз подчеркнуть, что ни одна теория, описывающая движение заряженных частиц в магнитном поле, не говорит о том, что электрон, мчащийся от Солнца к Земле, извлекает энергию движения из магнитного поля. Весь этот путь электрон преодолевает в результате первоначального толчка, полученного на Солнце. Магнитное поле - это "рельсы", вокруг которых по спирали движется электрон. В слабом магнитном поле получается широкая спираль; в сильном магнитном поле спираль становится гораздо уже. Чем быстрее летит частица, тем меньше она делает витков на данном участке пути.
Примерные траектории частиц низкой энергии, извергнутых Солнцем, показаны на фиг. 65. Заряженные частицы никогда не достигают экватора. Фактически они будут концентрироваться в очень узкой полосе вокруг геомагнитного полюса. Штёрмер быстро заметил, что его первоначальная теория нуждается в уточнении, поскольку она должна была объяснить существование зоны полярного сияния. Тогда он предположил, что электроны обладают более высокой энергией и, вместо того чтобы падать возле самого полюса, опускаются по кругу примерно в 23 град. от полюса, то есть в зоне полярных сияний, как показано на фиг. 66.
Однако Сидней Чэпмен в Англии доказал, что предположение Штёрмера относительно электронов, которые якобы в больших количествах извергает Солнце, находится в явном противоречии с другими фактами. Покидающие Солнце электроны несут, как и положено электронам, отрицательный заряд. Следовательно, чем больше электронов извергнет Солнце, тем больше должен становиться положительный заряд самого Солнца. Как известно, противоположные электрические заряды притягивают друг друга. Лишь очень немного электронов успеет покинуть Солнце, пока положительный заряд солнечной поверхности возрастет настолько, что они не смогут преодолевать его притяжение. И действительно, всех электронов, которые все-таки успели бы преодолеть притяжение