71924.fb2
Это явление уже в 1901 году наблюдал немецкий физик-экспериментатор Кауфман при опытах с отклонением быстрых электронов. Французские исследователи пришли к тем же результатам. Учение Эйнштейна теоретически объяснило эта эмпирические результаты. В области движения электронов было, таким образом, получено первое и на многие годы единственное экспериментальное доказательство выводов из специальной теории относительности.
Одно из величайших достижений специальной теории относительности признание того, что c, скорость света в свободном пространстве, образует верхнюю границу для всех мыслимых скоростей тел и для распространения всех физических воздействий. Никакое сложение величин скоростей не может ни достигнуть, ни превысить по величине c, это значит: никакое тело, обладающее массой покоя, не может быть приведено в движение со скоростью, равной скорости света в вакууме или даже превышающей ее Для этого требовалась бы, как это следует из релятивистской динамики, бесконечно большая сила, что физически бессмысленно.
При этом в физической картине мира c, по выражению Эйнштейна, играет роль "недостижимой граничной скорости". Физически возможным является только асимптотическое приближение к величине скорости света в свободном пространстве Тем самым был дан ответ на вопрос, который так живо интересовал Эйнштейна в Аарау. Никто никогда не может наблюдать независимое от времени волновое поле, потому что, исходя из естественных законов, никакое тело, а также никакой самый быстрый космический корабль отдаленного будущего не в состоянии устремляться за световым лучом со скоростью света.
Эйнштейн показал, что c, величина, впервые измеренная на движениях световых квантов и поэтому названная "скоростью света", обладает фундаментальным значением для всех естественных процессов: как всеобщая абсолютная естественная константа. Тем самым он обосновал новую релятивистскую механику, в которую ньютоновские законы движения входят как частные законы: они справедливы для тел, скорость движения которых мала по сравнению со скоростью света в свободном пространстве. Или, говоря иначе, формулы классической механик" выводятся из уравнений релятивистской механики, если скорость света в вакууме рассматривается как бесконечно большая.
В 1905 году в работе "Зависит ли инерция тела от его энергетического содержания" Эйнштейн сделал вывод, научных последствий и общественно-политического воздействия которого поначалу никто не мог предвидеть. Эта статья объемом всего три печатных листа содержит основные идеи учения о взаимоотношении между массой и энергией. По Эйнштейну, массу можно всегда свести к энергии, а энергию к массе. С излучением энергии связано соответствующее уменьшение массы покоя. При добавлении энергии возрастает и масса покоя. Лауэ считает справедливым, по меньшей мере для электрона, утверждение, что масса "есть не что иное, как форма энергии, которая при других обстоятельствах превращается в другие формы". Таким образом, положение о сохранении массы потеряло свою" самостоятельность; оно перешло в положение о сохранении и превращении энергии.
Диалектическая взаимосвязь массы я энергии отображена математически во всемирно известной формуле Эйнштейна: E = mc2 - энергия равна массе, умноженной на квадрат скорости света в свободном пространстве.
Эта формула открыла не замеченную до тех пор "эквивалентность" массы и энергии и дала физикам возможность выражать величину одной через другую. Для особого случая, инерции излучения внутри подвижного полого тела, еще за год до Эйнштейна австрийский физик Фридрих Газенёрль пришел к тому же результату; об инертности других или вообще всех видов энергии он, однако, не думал.
Утверждение, что Газенёрль, погибший в первой мирово" войне, открыл закон инерции энергии, является позднейшей легендой, которую распространял Ленард, не желавший признать, что этот фундаментальный закон атомной физики открыл "еврей Эйнштейн". Эта легенда косвенно была связана с его утверждением, что Рентген не был первооткрывателем рентгеновских лучей, хотя побудительные причины в данном случае были иными.
Учение об инерции энергии является одним из самых удивительных открытий естествознания. Оно есть результат чистого исследования основ науки, образец открытия, вырастающего из логики науки, а не вызванного какой-либо технической потребностью времени. При механических, тепловых и химических процессах в той мере, в которой ими технически пользовались в начале столетия, изменения энергии тел столь незначительны, что соответствующие изменения массы ускользают от наблюдения и практически не имеют значения.
В одной из лекций, прочитанных в 1956 году, Гейзенберг сказал: "За пятьдесят лет, прошедших со времени создания теории относительности, эта гипотеза об эквивалентности массы и энергии революционизировала физику, а в те времена экспериментальных доказательств этого закона было очень мало. В наши дни можно во многих экспериментах непосредственно видеть, как элементарные частицы рождаются из кинетической энергии и как такие частицы могут снова исчезнуть, превратившись в излучение. Поэтому ныне превращение энергии в массу и наоборот не представляет собой ничего необыкновенного".
Эйнштейн не считал возможным, что его уравнение станет практически применимым еще при его жизни. Но после открытия расщепления урана Ганом и Штрасманом и соответствующих исследований по физике ядра, проведенных Ферми и Жолио-Кюри, эйнштейновская формула обрела в атомной физике зловещий практико-технический смысл: как ключ к раскрепощению энергии атомного ядра и тем самым - при господствующих политических отношениях - как важнейшее теоретическое основание для производства атомных бомб.
Положение об инерции энергии порождено творческой мыслью исследователя, который всю жизнь боролся с войной и ненавидел ее, считая ее преступлением и позором для культуры. И какой глубокий трагизм в том, что первое техническое применение этого закона природы по вине социального строя было совершено во зло - он был поставлен на службу новым дьявольским методам уничтожения людей. Первое разрушительное применение формулы Эйнштейна оттеснило поначалу на задний план в сознании общественности ее значение в использовании сил атома для мира и в том числе в исследовании энергетического баланса звезд.
Теория относительности 1905 года со всеми выводами и следствиями сегодня принадлежит к экспериментально подтвержденным основам физики и почти превратилась в инженерную науку. Она имеет необычайно широкую сферу применения. Она, собственно, служит исчерпывающим толкованием физических экспериментов, пока не принимается во внимание сила тяжести. В ней содержится вся электродинамика. Она указывает путь в царство атомов. Ускорители частиц в ядерных институтах в Дубне, Женеве, Беркли и т.д. не могли бы работать и малейшую долю секунды, если бы учение Эйнштейна во всех составляющих его частях не было верным отражением действительности.
Как писал в одном из писем Макс Планк, эйнштейновская теория относительности "настолько высоко усовершенствовала и одновременно упростила строение теоретической физики, что последняя более немыслима без нее". Американские атомные бомбы 1945 года стали пробным камнем ее правоты. Они уничтожили последние сомнения и колебания многих ученых.
Известный французский физик Луи де Бройль так характеризовал методологическое значение теории относительности: "Она показала нам, что можно преодолевать кажущиеся неприступными препятствия и открывать неожиданные точки зрения, стоит только отказаться от предвзятых мнений, которые считаются справедливыми скорее в силу привычки, чем логики. Теория относительности была великолепным средством упражнять дух физиков".
Свое гениальное теоретическое открытие Эйнштейн осуществил будучи независимым ученым. Он не принадлежал ни к какому университету и в момент подготовки своей первой рукописи по теории относительности еще не имел докторской степени.
Не известно, удалось ли бы ему сохранить независимость и свободу мысли, столь необходимые для осуществления революции в физике, если бы он был тогда ассистентом какого-либо института. Сам Эйнштейн считал счастливым стечением обстоятельств то, что первые годы его творческих исканий прошли "в мирском монастыре", как он шутливо называл Патентное бюро - на такой службе, которая оставляла ему достаточно времени и сил для занятий собственными научными проблемами.
Такой личный опыт объясняет позднейшие высказывания Эйнштейна, утверждавшего, что юные теоретики, особенно математики и философы, должны работать на маяках или брандерах. Он считал, что это даст дм твердый заработок и одновременно поможет углубленным занятиям наукой, избавив их от необходимости постоянно и как можно больше публиковаться, что было характерным для обычного академического пути и располагало молодых ученых к поверхностности, если они не обладали достаточной твердостью характера.
Лишь немногие физики тотчас же поняли эпохальное значение теории относительности. К их числу принадлежал Макс Планк, который стал одним из первых и величайших покровителей молодого ученого. "Вы были одним из самых деятельных зачинателей современной физики, - сказал Эйнштейн в 1929 году в своей речи по поводу золотого докторского юбилея Планка. - Вы первый выступили в защиту теории относительности".
Планк с самого начала указывал на организующее и созидательное начало принципа относительности, признавая, что оно преобладает над разлагающим и разрушительным его действием. К числу сторонников теории относительности быстро примкнули Зоммерфельд и Лауэ В 1911 году Лауэ издал первую книгу о принципе относительности, которая внесла существенный вклад в распространение учения Эйнштейна.
Среди противников теории относительности были прежде всего физики-экспериментаторы того типа, о котором Эйнштейн позднее сказал иронически: "Все, чему они научились к 81-му году своей жизни, - это эмпирия. О чем они услышали лишь позднее, есть теория и логика".
Одним из самых непримиримых врагов теории относительности был Филипп Ленард, до конца своей жизни защищавший механистическую гипотезу эфира и даже открывший особый "проэфир". Однако исследователям масштаба и характера Рентгена или Вилли Вина переход к новому воззрению также готовил трудности и угрызения совести. Ученик Планка Макс Абрахам, один из последних представителей классической электродинамики, еще в 1920 году надеялся, что астрономические наблюдения опровергнут теорию относительности и тем самым честь "абсолютного" эфира будет восстановлена.
Примерно в это же время Рентген писал в одном из писем: "У меня все еще не укладывается в голове, что для объяснения природных явлений нужно употреблять такие совершенно абстрактные соображения и понятия". Даже Лоренцу, крупнейшему последователю специальной теории относительности, нелегко дался отказ от наглядного представления о покоящемся вещественном носителе световых волн.
В оформлении эйнштейновского принципа относительности участвовали многие математики и физики. Среди них в первую очередь должен быть назван Герман Минковский, учитель Эйнштейна в Цюрихе.
В своей работе "Основы электромагнетических процессов в движущихся телах" Минковский дал гениальной теории своего бывшего студента-прогульщика законченную математическую форму Минковскому принадлежит мысль, что пространство и время, по существу, должны рассматриваться как единство, как "союз". Три пространственные координаты связаны в единое целое с временной координатой в релятивистское пространство - время, в четырехмерный "мир".
Так же как позднее Зоммерфельд и Лауэ, Минковский в применении математических методов ушел настолько далеко от исходных представлений теории относительности, что Эйнштейн однажды, смеясь, заметил по этому поводу: "С тех пор как математики накинулись на мою теорию относительности, я ее больше сам не понимаю". Еще в 1910 году он рассматривал вклад Минковского в теорию относительности как поверхностное математическое дополнение и относился к нему, по свидетельству Борна, откровенно отрицательно. Вскоре, однако, о" переменил это мнение.
В год его величайшего открытия - 1905 - Эйнштейн получил в Цюрихском университете степень доктора философии, защитив диссертацию по молекулярной физике. Его диссертация носила название: "Новое определение размеров молекул".
Три года спустя он получил право преподавания теоретической физики в Бернском университете. В своей конкурсной работе на соискание доцентуры "Следствия из закона сохранения энергии в излучении черного тела, касательно структуры излучения" он рассматривал вопросы квантовой теории света.
Видимые успехи приват-доцента, который продолжал работать в Патентном бюро, были незначительными. В первый семестр его преподавательской деятельности в аудитории сидели четверо слушателей, двое из них были приятелями лектора. Во втором семестре явился один студент, так что объявленная лекция не состоялась. Но после назначения Эйнштейна в 1909 году профессором Цюрихского университета быстро пришло признание.
Осенью 1908 года на собрании естествоиспытателей в Кёльне Минковский изложил релятивистское учение о пространстве - времени и привлек внимание специалистов к создателю теории относительности. Сделанный Эйнштейном год спустя на собрании естествоиспытателей в Зальцбурге доклад о квантовой теории света укрепил мнение о нем коллег как о выдающемся и многостороннем ученом.
В Цюрихском университете Эйнштейн преподавал только три семестра. Затем последовало почетное приглашение на кафедру теоретической физики в Немецкий университет в Праге, где долгие годы трудился Эрнст Мах. В этом приглашении, которое исходило из круга учеников Маха, важную роль сыграло то обстоятельство, что Эйнштейна считали сторонником взглядов Маха. Он сам способствовал этому мнению, объявляя себя в своих письмах учеником и почитателем Маха.
С женой Милевой, которая прежде училась вместе с ним и была родом из Южной Словении, и двумя маленькими сыновьями Эйнштейн три семестра провел в Праге. За триста лет до него в этом городе работал Иоганн Кеплер. Здесь путем упорных расчетов он вывел, основываясь на наблюдениях Тихо Браге за Марсом, два своих первых закона движения планет и написал "Новую астрономию".
Вступительная лекция, которую Эйнштейн читал в переполненной аудитории Института естествознания, произвела на слушателей глубокое впечатление. Их привлекла простая, неакадемическая манера изложения лектора, его живой юмор. Слушатели были немало удивлены тем, что теория относительности - это, оказывается, нечто очень простое.
В Праге в распоряжении Эйнштейна был прекрасный институт с богатой библиотекой. Особенно дружеские отношения связывали его с математиком Георгом Пиком, бывшим ассистентом Эрнста Маха, позднее замученным в концлагере Терезиенштадт. В отличие от большинства профессоров, державшихся высокомерно по отношению к студентам, Эйнштейн вел себя в общении со своими слушателями просто и непринужденно. Как сообщает в своих воспоминаниях философ и математик Кольман, который тогда посещал лекции Эйнштейна, молодой профессор со студентом, задавшим ему интересный вопрос, мог часами ходить по улице из конца в конец, иногда даже под проливным дождем.
Альберт Эйнштейн много общался в писательском кругу с Францем Кафкой и Максом Бродом. Макс Брод писал в автобиографии, что основатель теории относительности меньше всего походил на "ортодоксального эйнштейнианца". Вызывала восхищение легкость, с которой он в споре, "экспериментируя, менял свою точку зрения. Ради опыта он вставал на противоположные позиции и заново рассматривал целое уже под другим углом". Казалось, что Эйнштейну даже доставляет удовольствие, продолжает Брод, "с неустанной отвагой пробовать все возможности научного рассмотрения какого-либо предмета". Он не уклонялся от многосторонности и все же оставался при этом "уверенным и мыслил творчески".
Осенью 1911 года Эйнштейн принимал участие в первом Сольвеевском конгрессе в Брюсселе, посвященном вопросам исследования атома. Вместе с Газенёрлем, который стал преемником Больцмана в Венском университете, Эйнштейн представлял теоретическую физику Австрии. Здесь встретились такие известные физики, как Мария Кюри, Ланжевен, Пуанкаре, Перрен, Резерфорд, Лоренц, Камерлинг-Оннес, Нернст, Планк, Рубенс, Вилли Вин, Эмиль Варбург, Арнольд Зоммерфельд и другие.
К этому же периоду относится посещение Эйнштейном столь уважаемого им критика ньютоновской механики, жившего в Вене. Его беседа с 75-летним физиком-философом, "гениальными исследованиями основ механики" которого он восхищался, вращалась главным образом вокруг роли "экономии мышления" и вопроса о формировании понятий в физике: в этих пунктах Эйнштейн был не совсем согласен с Махом. В какой мере он в это время склонялся к теории познания Маха и был готов поддерживать его философские устремления, ясно из того, что он вместе с Махом и другими представителями эмпириокритицизма подписал воззвание, способствовавшее возникновению Общества позитивистской философии. В числе ученых, подписавших это воззвание, были знаменитые гёттингенские математики: Феликс Клейн, Давид Гильберт и венский психиатр Зигмунд Фрейд.
Позднее Эйнштейну стала ясна ограниченность эмпиризма и он занял критическую позицию по отношению к теоретико-познавательным воззрениям Маха. В первую очередь он порицал Маха за то, что тот "неверно осветил конструктивную и спекулятивную по своему существу природу мышления, в особенности научного мышления, и вследствие этого осудил теорию именно в тех разделах, в которых конструктивно-спекулятивный характер выявляется со всей определенностью, как, например, в кинетической теории атома". Эйнштейн не видел или не признавал того, что основная философская ошибка Маха состояла в субъективном идеализме, как исчерпывающе доказал это В.И. Ленин в "Материализме и эмпириокритицизме".
Летом 1912 года Альберт Эйнштейн возвратился в Цюрих, где в Высшей технической школе была создана кафедра математической физики. Наряду с Марией Кюри его кандидатуру поддержал Анри Пуанкаре, который писал: "Господин Эйнштейн - один из оригинальнейших умов, которые я когда-либо знал; несмотря на свою молодость, он уже занимает в высшей степени почетное место среди ученых своего времени. Будущее принесет все новые и новые доказательства ценности, какую представляет собой господин Эйнштейн. Институт, сумевший привлечь его в свои стены, может быть уверен, что ему сделает честь сотрудничество с молодым ученым".
Пражский период был отмечен для Эйнштейна новым научным достижением. Исходя из своего принципа относительности, сформулированного в 1905 году, он в 1911 году в статье "О влиянии силы тяжести на распространение света" опубликовал первый вариант общей теории относительности. В этой работе уже содержался вывод, положивший начало известности Эйнштейна: световые лучи, исходящие от звезд, искривляются рядом с краем солнца, так как свет обладает инерцией и в поле тяготения солнца изменяется структура пространства.
Во время своей второй цюрихской профессуры Эйнштейн занимался разработкой математического аппарата, который был необходим для дальнейшего развития теории относительности и для построения нового, релятивистского учения о гравитации. Его большей частью приходилось создавать заново. Несмотря "а то что Эйнштейн никогда не относился к "хорошим математикам", он становится теперь также усердным и творчески мыслящим математиком.
Математика никогда не была для Эйнштейна самоцелью. В последние годы своей жизни он писал Лауэ: "Удивительна сама по себе возможность математически овладеть предметом, не зная действительного существа дела". Эйнштейна же всегда интересовало в первую очередь существо дела, содержание. "Главное все же содержание, а не математика", - сказал он одному из своих учеников в Цюрихе и добавил: "При помощи математики можно, собственно говоря, доказать все".
В выборе необходимых математических методов и в их применении Эйнштейну помогал его соученик Марсель Гросман, который в то время был профессором математики в том же учебном заведении, где преподавал Эйнштейн. Плодом их совместных трудов явилась рукопись "Набросок обобщенной теории относительности и теории гравитации". Математическая часть принадлежала Гросману, физическая - Эйнштейну. Эта работа была второй, после пражской теории, вехой на пути к общей теории относительности и учению о гравитации, которые были в основном закончены в Берлине в 1915 году.
Развитие релятивистского хода мыслей оказалось весьма утомительной, тяжелой и скучной работой. "Математические трудности, на которые наталкиваются, следуя этим мыслям, к сожалению, слишком велики и для меня", - заметил Эйнштейн в одном из писем Маху. Несколько позже, в июле 1913 года, он писал: "Этими днями Вы, вероятно, получили мою новую работу об относительности и гравитации, которая наконец-то готова после бесконечного труда и мучительных сомнений".
Подтверждением высокого авторитета, которым пользовался создатель теории относительности среди физиков, явилось избрание его в 1913 году действительным членом Берлинской Академии наук. Ему было тогда всего лишь 34 года. Он был приглашен занять место великого физико-химика, лауреата Нобелевской премии Вант-Гоффа, место, которого напрасно добивался Рентген.
Предложение о приглашении Эйнштейна исходило от Планка. "Вы решительно способствовали моему внешнему продвижению и тому, что я получил такие условия работы, которые даются лишь немногим", - говорил Эйнштейн Планку в 1929 году, вспоминая свое приглашение в Берлин. Планк лично вместе с Нернстом ездил в Цюрих, чтобы склонить Эйнштейна принять место.
В Берлине Эйнштейн мог посвятить себя исключительно своим теоретическим исследованиям. Физический институт Общества кайзера Вильгельма по поощрению наук, которым он должен был руководить, существовал тогда только на бумаге. Он был основан в 1917 году, но лишь 20 лет спустя, когда Эйнштейн уже вновь покинул Берлин, получил собственные рабочие помещения. Эйнштейну было предоставлено право читать лекции и вести семинары по избранным им самим темам, не будучи обязанным принимать участие в каких-либо учебных мероприятиях или факультетской работе.
Таким образом, ему открывалось поле деятельности, которая наилучшим образом соответствовала его научным потребностям и его личным желаниям. Это побудило его преодолеть свое политическое неприятие империалистической Германии, от которой он отвернулся еще будучи школьником, принять избрание в Прусскую Академию наук и переехать в Берлин. Жена Милева и сыновья остались в Швейцарии.
В начале апреля 1914 года Эйнштейн приступил к своей новой службе "как академический муж без каких-либо обязанностей, нечто вроде живой мумии", писал он в характерном для него стиле одному из своих друзей.