71973.fb2
на себе следы обширных отложений, частично осадочного происхождения. Здесь же сосредоточено большинство вулканов. Анализ фигуры Марса показал, что покрытые кратерами возвышенности лежат в среднем па 3 км выше, чем гладкий "океан" северного полушария. Наличие лишь слабых следов космической бомбардировки показывает, что поверхность океана сложена более молодыми породами (скорее всего, излияниями базальта), чем испещренный кратерами материковый район. Для равнин характерно наличие вулканов в виде
конусов с кальдерами на вершинах. Свежие натеки на склонах конусов тоже указывают на их геологическую молодость.
Распределение участков поверхности Марса по уровням, построенное У. Хартманном на основе как радиолокационных, так и спектрофотометрических разрезов рельефа, позволило установить, что гипсометрическая кривая Марса, показывающая, как часто встречается на планете тот или иной уровень, имеет два максимума (рис. 18). Таким же свойством обладает, как известно, гипсометрическая кривая Земли. Причина этого явления состоит в том, что гранитные континентальные блоки земной коры как бы плавают в более плотном веществе
мантии, в соответствии со схемой Дж. Эри. При этом они подобно ледяным айсбергам в океане возвышаются над средним уровнем океанического дна на несколько километров. Два максимума на гипсометрической кривой Земли и соответствуют средним уровням материков и дна океанов.
Нечто подобное наблюдается и на Марсе. У. Хартманн построил такую схему для Земли и Марса (рис. 19). Данные для Земли известны из непосредственных определений плотности пород и сейсмических измерений. Средняя плотность гранитных материковых блоков 2,75 г/см^, базальтовой "подложки" 3,05 г/см^, среднее возвышение материковых блоков над "подложкой" hc=--3 км, их погружение /iД==31 км, а общая толщина hp -{- h, == 34 км. Плотность верхней мантии Марса, по Байндеру и Девису, составляет 3,4 г/см^ (эта
выдвинутая английским геологом А.Холмсом и разработанная амери-канскими геологами Р.Дитцем и Г.Хессом "глобальная тектоника плит", суть которой заключается в следующем (рис. 20): земная кора (литосфера) состоит из нескольких гигантских плит протяженностью в тысячи километров, разделенных трещинными разломами, проходящими вдоль осей океанических хребтов, в так называемых рифтовых зонах (один из таких хребтов проходит по средней линии Атлантического океана). Как установлено непосредственными исследованиями, океаническая кора-весьма молодая (около 100 млн. лет). Кроме того, наблюдения свидетельствуют, что Европа и Америка отдаляются друг от друга со скоростью
величина рассчитана теоретически на основании средней ллотности и модели внутреннего строения планеты). Для плотности материков Марса Хартманн принял значение 2,9 е/см^-несколько большее, чем для Земли, ввиду меньшей концентрации вещества к центру планеты. Из гипсометрической кривой для Марса можно получить величину hc=3 км (как для Земли). По величине he и значениям плотностей получается общая толщина коры Марса hc-}-hr==20 км с возможными пределами от 15 до 33 км. Таким образом, кора Марса, по схеме Хартманна, тоньше земной и лунной коры (толщина последней по сейсмографическим данным равна 65 км). Близкие результаты независимо от Хартманна получил советский геолог В. Б. Нейман.
Для понимания дальнейшего необходимо напомнить, что мы еще не имеем общепринятой точки зрения на глобальную тектонику нашей Земли. За последние 15 лет все более широкое распространение получает
4 см/гол. Возрождая старую гипотезу дрейфа материков, авторы глобальной тектоники плит утверждают, что в области океанических хребтов поднимаются вверх новые участки литосферы, что приводит к раздвиганию плит в стороны от зон поднятия. Встречаясь со старыми блоками материковой коры в районе островных дуг, расположенных вдоль границ материков, расходящиеся плиты уходят под материковую кору, погружаясь обратно в мантию. Места, где это происходит, называются зонами поддвигания. Все движения плит происходят на размягченной верхней части мантии-астеносфере-слое, имеющем пониженную плотность. Источником энергии служат конвективные движения в мантии.
Гипотеза глобальной тектоники плит получила подтверждение со стороны палеомагнитных данных. Последние показывают, что ориентировка магнитных меридианов в древние эпохи на разных материках была
различной, что как будто свидетельствует о смещении, дрейфе материков. Однако эта концепция встречает ряд трудностей, главным образом геологического характера. Вокруг нее продолжаются острые дискуссии как в нашей стране, так и за рубежом *). Поэтому изучение данных по геологии Марса может сыграть известную роль в проверке и этой гипотезы.
Марсианская кора, особенно в районе Тарсис, показывает ясные признаки поднятия, вызванного движениями мантии. Эти поднятия сопровождаются уничтожением древних кратеров, образованием разломов и систем грабенов, подобных каньону Копрат, тянущемуся на 4000 км, и проявляются в интенсивном вулканизме. По мнению У.Хартманна, это указывает на текущую или недавнюю активность мантии планеты, достаточную для возмущения ее коры, объясняющую ее дифференциацию (наличие двух типов пород: темных и светлых) и образование материковых блоков, но недостаточную для создания развитого дрейфа материков или складкообразующего столкновения плит, как это имеет место на Земле.
Действительно, как отмечают американские специалисты Р. Шарп и М. Кэрр, на Марсе не удалось обнаружить никаких характерных признаков зон поддвигания или признаков расширения плит коры. В частности, вулканы Марса аналогичны земным внутриплитовым вулканам, аналоги же вулканов земных зон поддвигания отсутствуют.
Можно считать, заключает У. Хартманн, что Марс в геологическом отношении занимает промежуточное положение между Луной и Землей. На Луне мы не наблюдаем ни поднятий коры, ни признаков столкновений плит; на Марсе поднятия коры наблюдаются, а столкновения плит-нет; наконец, на Земле происходят и те и доугие процессы.
Проявления вулканизма на Марсе были подробно изучены М. Кэрром. На Марсе есть два класса вулканических образований: покрытые редкими кратерами
*) См. X а и н В. Е., Происходит ли научная революция в геологии? "Природа", N 1, 1970; Артюшков Е. ВД Что приводит в движение земную кору? "Природа", N 10, 1973; ГородницХкий А. М , С орохти н О. Г., Ушаков С. А., Дрейф континентов и современные представления об эволюции Земли, "Земля и Вселенная", N 5,1974.
равнины, напоминающие лунные моря, и круглые образования, к которым относятся щитовидные вулканы, купола и кратеры*). Вулканические образования распределены по поверхности планеты неравномерно, будучи сосредоточены почти полностью в одном полушарии-на территории северного "океана". Щитовидные вулканы Марса (см. рис. 13) больше их земных прототипов, поскольку марсианская кора неподвижна по отношению к мантии, что оставляет больше времени на рост щитов. Анализ крупномасштабных снимков поверхности Марса показывает, что вулканическая активность имела место на протяжении всей доступной дешифровке истории планеты.
Попытка проследить историю развития марсианского рельефа на основании анализа снимков "Маринеров" была предпринята советским геологом Ю. А. Ходаком II чехословацким планетологом К. Бенешем. Последний выделяет четыре основные системы, отражающие последовательность эволюции поверхности планеты: доэлладскую, элладскую, амазонскую и олимпийскую. В схеме Ю. А. Ходака-девять периодов развития Марса;
1) древнейший, с формированием древних кратеров;
2) элладский кряжистый, или мезогейский, сопровождавшийся образованием кряжей и кратерных площадей;
3) элладский выровненный, или аргирский, с образованием опущенных талассоидов; 4) девкалионский, с образованием несколько приподнятых кратерных площадей: 5) эритрейский, с образованием опущенных кратерных площадей с кряжами и расселинами; 6) атлантидский, с обр^зэзанием линейных депрессий типа "каналов"; 7) олимпийский, с образованием приподнятого массива; 8) неоолимпнйский, с образованием вулканических структур; 9) новейший**).
*) Щитовидные вулканы образуются в результате поступления снизу, )1з астеносферы, легкой базальтовой лавы, растекающейся в стороны и сознающей подобие щита. Эти вулканы имеют малые углы склонов (около 10°), в отличие от насыпных конусов типа Везувия. Типичный представитель щитовидных вулканов - Мауна Лоа на Гавайях. Купола округлые поднятия, обычно вершины складок земной коры. Нередко на куполах образуются вулканы.
**) Названия периодов образованы от русских наименований основных деталей альбедо (гемных и светлых пятен) Марса: Эллада (Hellas), Мезогея (Mesogaea), Аргир (Argyre), Страна Девкалиона (Deucalionis Regio), Эритрейское Море (Маге Erythraeum), Атлантида (Atlantis), Олимпийские Снега (Nix Olynipica).
Еще в 1959 г. советский планетолог Г. Н. Каттерфельд высказал гипотезу, что марсианские "каналы"- это в основном разломы, подобные глубинным разломам Земли. В 1973 г. Г. В. Чарушин и Г. Н. Каттерфельд произвели статистический анализ распределения "каналов" Марса и разломов Земли по направлениям и изменения их частоты по площадям. Им удалось выявить много общего в этих распределениях для Марса и Земли и сделать вывод о том, что фотографии "Маринеров" подтверждают разломную гипотезу,
Но произведенное уже в 1975 г. американскими астрономами К. Саганом и П. Фоксом детальное исследование связи сети "каналов" Ловелла с реальными структурами рельефа и деталями альбедо Марса (т. е. с границами материков и морей) показало, что только меньшая доля классических "каналов" связана с разломами (типа Копрата), горными хребтами, цепочками кратеров и другими образованиями. В их числе оказались, между прочим, и все те каналы, которые выходили на фотографиях. Большая же часть классических "каналов" все-таки оказалась оптической иллюзией. И гипотеза 3 (см. стр. 28) снова заняла доминирующее положение, сильно потеснив гипотезы 26 и 2в.
Пусть читатель, однако, не огорчается этим обстоятельством. На смену "каналам" Скиапарелли и Ловелла пришли другие каналы (без кавычек)-вполне реальные образования, поставившие перед учеными ряд трудных, но интересных проблем. О них будет рассказано в следующем разделе.
Большое исследование распределения марсианских кратеров по размерам в различных областях планеты выполнил У. Хартманн. Число малых кратеров на единицу площади даже в густо покрытых кратерами районах меньше, чем на Фобосе и Деймосе. Это позволило оценить скорость эрозии, разрушающей малые кратеры на Марсе и отсутствующей на его спутниках, а заодно оценить возраст различных кратерных площадей. Согласно этим оценкам, вулканический район Тарсис не старше 300 млн. лет, тогда как древние кратерные области южного полушария насчитывают возраст 3-4 млрд. лет. Самые крупные щитовидные вулканы в Озере Феникса и Олимпийских Снегах существуют не более
100 млн. лет. Заметно также, что около 600 млн. лет назад скорость эрозии резко уменьшилась.
Процесс ветровой эрозии и связанные с нею перенос пыли и образование слоистых отложений тоже явились предметом исследования американсьих специалистов. Выветривание на Марсе играет гораздо большую роль, чем па Земле, в изменении его рельефа. Перенос пыли
и эоловы (ветровые) отложения определяют структуру многих районов на Марсе. Сплошным покровом таких отложений покрыта гигантская котловина Эллады. Вокруг границ полярных шапок древние слоистые отложения образовали большие лунки и ложбины. Из этих областей происходит постепенный перенос эоловых обломков к экватору. В некоторых местах отмечены образования типа дюн (рис, 21), в других-слоистые
волнообразные отложения. Расположение слоев наносных пород почти симметрично относительно экватора планеты (их мощность возрастает к полюсам) и почти одинаково в обоих полярных районах.
Разумеется, все это-лишь первые шаги в понимании геологии и геоморфологии Марса. Впереди-новые исследования. Ценный вклад даст детальный анализ крупномасштабных фотографий поверхности Марса, полученных в феврале и марте 1974 г. советскими автоматическими межпланетными станциями "Марс-4" и "Марс-5".
Климат Марса в прошлом
Среди образований, обнаруженных на поверхности Марса, всеобщее внимание привлекли руслообразные протоки, или меандровые долины, о которых уже упоминалось*). Их внешний вид, наличие "притоков" вряд ли можно объяснить иначе, чем предположив, что эторусла рек.
Однако, как уже говорилось выше, на Марсе в настоящее время реки течь не могут, там вообще не может быть жидкой воды. Причина этого состоит в том, что при тех низких давлениях, которые господствуют на Марсе, вода закипает уже при очень низких температурах. Тройная точка воды, когда лед переходит в пар, минуя жидкую стадию, соответствует давлению 6, \мбар, которое как раз характерно для среднего уровня поверхности Марса. Но даже при более высоких давлениях (10-20 мбар) вода должна закипать при температурах 7-18°С, которые на Марсе осуществляются. Поэтому за короткий срок вода должна переходить в пар.
Никакая другая жидкость не могла образовать наблюдаемых русел: лава быстро застывает, а жидкая углекислота даже в земных условиях не может существовать: твердый 002 переходит непосредственно в пар и наоборот.
Итак, единственное возможное объяснение меандров на Марсе - это образование водных потоков, рек. Сейчас для него нет необходимых условий - значит, они были в прошлом. Для этого нужно допустить, что
*) Меандрами называют высохшие (старые) русла рек.
в более ранние эпохи атмосферное давление на Марсе было значительно выше, чем в настоящее время.
Возможно ли это? Оказывается, да. Ведь Марс - единственная планета, где вещество полярных отложений (полярных шапок) совпадает по составу с основным газом атмосферы-углекислым газом.
(В самом деле, на Земле полярные шапки состоят из замерзшей воды, а доля водяного пара в земной атмосфере не превышает 0,3%. На Венере же вообще не существует полярных шапок.)
Это значит, что если бы можно было вещество полярных шапок Марса превратить в пар, то давление его атмосферы существенно увеличилось бы. В самом деле, общая масса марсианской атмосферы равна 2-10'^ г, тогда как масса полярных шапок Марса, по расчетам американского астронома К. Кросса (1971 г.) и советского радиоастронома В. И. Алешина (1972 г.), почти такая же. В случае их полного испарения масса 002 в атмосфере Марса, а значит, и атмосферное давление, удвоились бы. Образование жидкой воды и текущих рек стало бы возможным.
Увеличение мощности атмосферы, состоящей из 002, приведет к усилению парникового эффекта и повышению температуры планет. Однако парниковый эффектлишь вторичная причина повышения температуры, появляющаяся уже в результате испарения полярных шапок. Должна существовать первичная причина, влияющая на климат планеты.
Для объяснения потепления климата Марса в прошлом были предложены две гипотезы. Одна из них (более прозаическая) была предложена американскими астрономами Дж. Бернсом и М. Харвитом и состоит в том, что из-за прецессии оси Марса (под действием Солнца) и плоскости его орбиты (за счет возмущений от планет) с периодом суммарной прецессии 50000 лет эпохи резкого различия температурных условий лета и зимы (когда лето в одном из полушарий совпадает с положением Марса близ перигелия, а зима-близ афелия его орбиты) сменяются через 10-12 тысяч лет эпохами более умеренного климата, когда и лето, и зима в обоих полушариях наступают при средних расстояниях Марса от Солнца. В последнем случае минимальная температура на планете будет выше, а зима в южном
полушарии короче, чем в настоящее время. В эти эпохи и были, по мнению Бернса и Харвита, необходимые условия для полного испарения обеих полярных шапок. Оба ученых предложили даже фантастический проект, как "удержать" ось Марса в благоприятном для климата положении. Для этого нужно переместить Фобос на другую орбиту либо создать вокруг Марса кольцо новых "естественных" спутников, позаимствовав их из пояса астероидов.
Гораздо более интересна и оригинальна другая гипотеза, предложенная К. Саганом. В ней американский ученый попытался объяснить с единой точки зрения такие, казалось бы, разные явления, как ледниковые периоды на Земле, недостаточный поток нейтрино от Солнца и реки на Марсе.
В самом деле, за последние 100 тысяч лет Земля переживала четыре периода оледенения, перемежавшиеся сравнительно теплыми межледниковыми периодами, один из которых мы переживаем сейчас. Наиболее вероятной причиной этих чередований теплых и холодных периодов является изменение притока солнечного тепла.
С другой стороны, поток нейтрино, улавливаемый совоеменными нейтринными телескопами, намного меньше, чем следовало ожидать, исходя из пред^авлений о пгюисходящих на Солнце термоядерных реакциях*). К. Саган совместно с астрофизиком Э. Юнгом предложил следующее объяснение.
Ядро Солнца, в котором происходят термоядерные реакции, испытывает перибдические (с периодом около 10^ лет) расширения, вызванные перемешиванием легкого изотопа гелия Не^ играющего важную роль в цепи так называемой протон-протонной реакции. Выход нейтрино отражает современную интенсивность термоядерных реакций, которая, по мнению Сагана и Юнга, понижена. Наоборот, излучение, испытывая на пути от ядра Солнца к его поверхности длинную цепь процессов рассеяния, поглощения и переизлучения на других длинах волн, характеризует уже прошедший этап в эво iin- ции Солнца. Изменение светимости Солнца за счет пульсаций его ядра по схеме Сагана-Юнга может