71977.fb2
А под водой? Мощный слой воды толщиной нередко в несколько километров "поджимает" струю у жерла.
Концентрации продуктов резко увеличиваются. Сама струя становится меньше, а органические молекулы выносятся в "комфортные" условия, в воду, где и могут происходить дальнейшие реакции с их участием.
Если же вулканы в древности располагались в небольших внутренних морях или озерах, то совершенно ясно, что они могли их насытить органическими молекулами. И когда число этих молекул достигло некоторой критической концентрации, могли образовываться все более сложные молекулы, давшие наконец толчок для появления первых живых систем.
Не нужно забывать еще об одном проявлении вулканической деятельности. Речь идет о работе уже упоминавшихся гидротермальных систем, фумарол, гейзеров.
Их деятельность сравнима по производительности с деятельностью вулканов. Например, фумаролы Мутновского вулкана выбрасывают 200 килограммов водяного пара в секунду, а работают они непрерывно уже в течение тысяч лет Фумаролы, как мы уже говорили, извергают газы, необходимые для синтезов органических соединений: аммиак, метан, водород и ряд других.
Между Петропавловском-Камчатским и поселком Ключи есть вулкан Семячек. В кратере этого вулкана находится удивительно красивое, бирюзового цвета озеро На дне озера расположены фумаролы. Посмотрим, что могло бы дать такое озеро 4 миллиарда лет назад, если бы на его дне в течение десяти тысяч лет "работали" фумаролы и выделяли бы именно те газы, о которых мы уже упоминали.
Пусть объем озера - миллион кубических метров, а производительность фумарол такая же, как производительность фумарольных полей Мутновского вулкана.
(Я специально беру абсолютно реальные, ненадуманные цифры.) Простые расчеты показывают, что "всего" за десятки тысяч лет жизни такого озера в нем могли бы накопиться сотни тысяч тонн органических соединений Вот где мог вариться первичный бульон: в вулканических озерах и внутренних морях.
Палеогеологические данные неопровержимо говорят нам о том, что миллиарды лет назад вулканические процессы на поверхности Земли были выражены гораздо сильнее, чем сегодня. Почему? В частности, потому, что Луна тогда была гораздо ближе к Земле, чем сейчас.
Расчеты показывают, что Луна удаляется от Земли приблизительно на один сантиметр в год. Тогда, миллиарды лет назад, Луна, находясь вблизи Земли, вызывала огромные напряжения в ее коре за счет так называемых приливных сил.
С обычными приливами в океанах, также вызываемыми движением Луны, мы хорошо знакомы. Однако чем ближе планета и ее спутник, тем сильнее их взаимодействие Вполне возможно, что в те далекие даже по геологическим масштабам времена в земной коре могли образовываться большие трещины, которые способствовали еще более мощному проявлению вулканической деятельности.
То обстоятельство, что в ранние геологические эпохи вулканизм был сильнее, подтверждается наблюдениями в Западной Сибири и Южной Бразилии. В Западной Сибири огромные пространства покрыты лавами, как их называют геологи, траппами. Эти породы датируются временем в миллионы лет назад. Ничего подобного в наши дни наблюдать не удается. Некоторые геологи считают, что вообще вся земная кора - продукт деятельности вулканов.
Но как все-таки удалось экспериментально подтвердить предположение о том, что вулканы могут "генерировать" органику?
Здесь были сделаны две вещи.
Во-первых, мы "смоделировали" в лаборатории вулкан. Причем не просто вулкан, а целых два вулкана - наземный и подводный. Конечно, все полностью воссоздать не удалось. Но мы сделали самое главное: смоделировали состав газовой смеси и жерло вулкана с лавой. В качестве жерла нам служила толстостенная кварцевая трубка, заполненная вулканической лавой и помещенная в печку, которая нагревала эту трубку до тысячи с лишним градусов. А через трубку пропускали воду, метан и аммиак.
В случае нашего наземного лабораторного вулкана мы сразу анализировали продукты, выходящие из трубки, а в случае подводного направляли "извержение" в колбу с водой и потом уже анализировали эту воду.
Для" анализа использовалась очень чувствительная аппаратура, которая могла обнаружить 0,00 000 000 001 грамма органических соединений. Такие приборы называются газовыми хроматографами и хроматомасс-спектрометрами.
В результате этих работ нам удалось доказать, что при вулканических извержениях должны образовываться и синильная кислота, и альдегиды, и аминокислоты.
Из синильной кислоты и альдегидов (вообще говоря, даже только из синильной кислоты) можно получить наиболее важные для биологии молекулы.
Но одно дело провести лабораторные опыты, а иное - попытаться обнаружить эти молекулы в районах действующего вулканизма. Именно для этой цели вместе со своим товарищем, заведующим лабораторией вулканохимии Института вулканологии В. Пономаревым я отправился на остров Атласова, самый северный остров Курильской гряды.
Остров этот необитаемый. Когда подплываешь к нему на корабле и еще не видишь берегов, кажется, что прямо из Охотского моря вырастает огромный ослепительно белый снежный конус. Это вулкан Алаид.
В 1972 году он взорвался боковым извержением, у подножия вулкана вырос новый конус, и огромный-поток лавы, напоминающий издали доисторическое чудовище, сполз в море. Спустя год из трещин на вершине конуса еще шел горячий газ. Именно этот газ мы и хотели проанализировать на месте.
Не проще ли было отобрать пробы, привезти их в Москву и исследовать на хорошем лабораторном оборудовании? Но дело в том, что хотелось найти именно синильную кислоту, тот самый цианистый водород, который может давать начало многим биологически важным соединениям, в то же время убивая все живое.
И, хотя молекула цианистого водорода устойчива по отношению к теплу, она слишком охотно вступает в химические реакции (особенно с водой). Именно поэтому ее нужно ловить "на месте", потом уже будет поздно.
Есть реактив, который реагирует только на цианистый водород. Если этот реактив поместить в небольшую стеклянную трубочку и пропустить через нее газ, в котором есть хотя бы следы цианистого водорода, трубочка с реактивом покраснеет (вернее, покраснеет реактив). Вот на эту "застенчивость" реактива мы очень надеялись, когда высадились с корабля на остров Атласова.
Для начала нужно было выбрать наиболее подходящую для экспериментов трещину, из которой выходят вулканические газы, Вообще-то вулканических трещин на Алаиде превеликое множество, но вся беда в том, что большинство из них низкотемпературные. Понятие "низкотемпературная" имеет здесь, конечно, весьма относительный смысл, поскольку даже у самых низкотемпературных трещин она около 300-400 градусов. Но это нам не подходило, потому что при таких температурах синильная кислота быстро реагирует с водой. Пришлось искать более горячие трещины. Две мы нашли на самой вершине молодого вулкана, Они представляли собой глубокие разрывы в лавовой корке. Внутри трещин лава меняла цвет от ярко-красного до ослепительно бело-розового. Это нам и было нужно.
Из обеих трещин вырывался раскаленный газ. Мы взяли титановые трубки длиной около двух метров, погрузили их в трещину и стали прокачивать газ через трубочку с реактивом. Они мгновенно покраснели. Сейчас, много лет спустя, уже трудно вспомнить, какую радость мне довелось пережить. Ведь за два года до ?ксперимента на Алаиде я теоретически предсказал наличие синильной кислоты в вулканических газах.
Мы провели на конусе вулкана несколько дней, и каждый раз результаты наших опытов были положительными. Более того, в следующем году я снова попал на Алаид. Трещины еще "работали", и мы опять стали проверять наш реактив. Он покраснел. Все было в порядке. Вулканы действительно могут генерировать органические соединения.
Позже мы исследовали также на органические молекулы выходы парогазовых струй, связанных обычно с магматическим очагом. Здесь эксперименты были слож нее, так как все выходы обычно загрязнены микроорганизмами и существует опасность открыть органику чисто поверхностного, микробного происхождения. Эта тонкость не всегда учитывается геологами в их работах.
Поэтому мы проводили тщательное микробиологическое исследование проб, взятых из парогазовых струй.
В одной из скважин в районе Кошелевского вулкана в стерильной пробе была обнаружена простейшая аминокислота - глицин. Теперь окончательно стало ясно, что вулканизм был одним из решающих факторов, который на ранних стадиях развития Земли играл главную роль в процессах химической эволюции.
Теперь остается ответить на вопрос: почему, если вулканы выделяют метан и аммиак в течение долгого времени, мы не видим этих газов в атмосфере? Почему же сейчас не накапливается органика в районах активного вулканизма?
Ответ прост. Сейчас на Земле есть жизнь, и она очень быстро уничтожает органические молекулы, которые являются хорошей пищей, например, для микроорганизмов.
Более того, в Петропавловске-Камчатском в филиале Тихоокеанского института рыбного хозяйства мне говорили, что экспедиции института заметили в южных морях интересное явление. Там, где на дне моря есть подводные вулканы, рыб и водорослей всегда больше. Это, конечно, весьма косвенное, но все-таки доказательство.
Теперь по поводу атмосферы. В ней могут накапливаться только малоактивные с точки зрения химии газы.
Поэтому аммиак и другие реакционноспособные газы очень быстро исчезают из атмосферы. Вот почему образование органики интенсивнее идет в локальных вулканических районах, где эти самые газы не успевают рассеяться в атмосфере.
Итак, из смеси простых газов можно получить и аминокислоты, и аденин, и даже более сложные молекулы.
Означает ли это, что мы вплотную подошли к решению задачи о создании первого живого организма in vitro, в пробирке?
Чтобы ответить на этот вопрос, нам надо посмотреть, как построена живая клетка и как она работает.
Глава VI
МОЛЕКУЛЫ ЖИЗНИ
Человек сравнительно недавно познакомился с клеткой, когда научился изготовлять линзы, дающие достаточно сильное увеличение. Однако только через два столетия он понял, что клетка - основа всего живого на Земле.
Если попросить любого ученого назвать десять величайших открытий за всю историю человечества, то в числе их наверняка будет назван микроскоп. Если создание телескопа дало людям новый метод исследования структуры макромира, то микроскоп открыл путь изучения микромира. Символично, что объектив телескопа направлен всегда вверх, к звездам, микроскопа - вниз.
Рождение новой науки - бактериологии тесно связано с именем голландского натуралиста А. ван Левенгука.
Будучи по профессии торговцем сукном, он пользовался значительным авторитетом среди сограждан своего родного города Дельфта. Левенгук был по-настоящему одаренный человек. Один из крупнейших специалистов по молекулярной генетике, американский ученый, член Американской академии искусств Г. Стент, говорил, что в науке добиваются наибольших успехов люди беспокойные, ищущие, любопытные, люди "фаустовского склада".
Конечно, одних этих качеств недостаточно, нужен еще как-абсолютно необходимое условие мощный интеллект.
Когда все эти свойства объединяются, получается человек "фаустовского склада", истинный ученый.
Казалось, что нужно Левенгуку? Торговля сукном идет успешно, любой горожанин первым раскланивается с ним на улице, в доме полный достаток. Но Левенгук, не имея никакой специальной подготовки в науке, упорно занимается самообразованием. Он овладевает искусством изготовления стеклянных изделий и обработки металлов. Наибольшего мастерства достиг он в создании маленьких, но мощных линз, и ему удалось добиться огромного по тем временам увеличения в 150-200 раз.
Для Левенгука с его линзами открылся новый мир.