71977.fb2 Планеты и жизнь - читать онлайн бесплатно полную версию книги . Страница 13

Планеты и жизнь - читать онлайн бесплатно полную версию книги . Страница 13

Главные труженики клетки - белки. Ни один процесс, происходящий в живой клетке, не обходится без участия белков. Голландский ученый Мюльдер первый предугадал их центральную роль в жизненных процессах и назвал эти соединения в 1838 году протеинами (от греческого слова "протос" первичный). В течение последующих ста пятидесяти лет многие ученые проявляли большой интерес к исследованию белков, и поэтому к настоящему времени об их сложной структуре и функциях известно довольно много.

В каждой живой клетке ежесекундно протекают сотни химических реакций. Однако вряд ли хоть одна из них осуществилась, если бы в них не участвовали биологические катализаторы - вещества, которые увеличивают скорость реакций в сотни тысяч раз, а сами при этом остаются неизменными.

В неорганической химии катализаторы, обычно такие металлы, как железо, никель, платина, широко используются для получения промышленно важных соединений.

Однако эффективность металлов как катализаторов не идет ни в какое сравнение с эффективностью биокатализаторов. Они называются ферментами, а все ферменты - белки.

Это отнюдь не означает обратного, что все белки - ферменты. Белки используются природой в качестве строительного материала тканей: кожи, сухожилий, мышц, нервных волокон. Волосы и ногти, например, почти полностью состоят из белковых материалов, длинных волокнистых структур.

Центральную роль в любом организме играют ферменты. Без них остановилась бы жизнь, все реакции в клетке настолько бы замедлились, что организм не сумел бы, например, своевременно удалять непрерывно накапливающиеся в нем ядовитые вещества.

Как построены белки?

Строительными блоками, кирпичиками для конструирования белковой молекулы служат аминокислоты. Их удается синтезировать in vitro, то есть вне организма, небиологическим путем. Двадцать природных аминокислот состоят из углерода, водорода, кислорода и азота.

Правда, две аминокислоты из двадцати, участвующих в построении белков, содержат также серу. В чистом виде аминокислоты - белые порошки со слабым специфическим запахом.

В 1806 году из сока спаржи впервые было выделено соединение, которое оказалось аминокислотой и получило название аспарагина.

Какой химический смысл несет в себе слово "аминокислота"? Это значит, что молекула имеет одновременно в своей структуре и кислую и основную группы, которые прикреплены к одному и тому же атому углерода.

Этот атом называется центральным. Роль кислой группы выполняет так называемая карбоксильная группа, состоящая из атома углерода, двух кислородов и одного водорода. Аминогруппа, в нее входят атом азота и два атома водорода, расположена на "другом конце" центрального атома углерода.

С 1806 по 1935 год химиками-органиками были получены все двадцать аминокислот. Интересно, что чистый препарат серосодержащей аминокислоты цистина получен в 1810 году из камней мочевого пузыря. Этот препарат сначала назвали окислом мочевого пузыря. Из белкового материала аминокислота была впервые выделена в 1820 году. Она оказалась самой простой. Эта аминокислота получила название глицина.

Несмотря на то, что все аминокислоты выделялись химиками из органического материала, лишь в 1870 году русский химик Н. Любавин впервые высказал идею о том, что белковое вещество состоит из аминокислот.

Эта мысль лет на двадцать опередила свое время, и лишь работы Э. Фишера установили, что белки состоят только из аминокислот.

Химики-органики разработали приемы, используя которые можно заставить аминокислоты соединиться в цепочку. Такие полимеры аминокислот называются полипептидами. Полипептид можно получить искусственно.

Белок вырабатывается только живой клеткой. В чем же разница между полимером, полученным в лаборатории, и полимером, построенным живой клеткой?

Вот здесь мы подошли к очень существенному и интересному вопросу. Известно, что аминокислоты можно синтезировать в пробирке. Можно сделать из них полимер. Будет ли этот полимер обладать теми свойствами белка, которые делают незаменимой эту молекулу в организме? Сразу и определенно можно сказать, что нет!

И вот почему.

Обычно белковая молекула содержит сто-двести строительных блоков, их называют аминокислотными остатками. В "остатки" их записали потому, что, когда две молекулы аминокислоты связываются в дипептид, они "на пару" теряют одну молекулу воды. В пептидной цепи их структура уже несколько иная, чем в свободном виде. Если аминокислотных остатков сто, то очевидно, что из них (используя 20 различных сортов аминокислот) можно выстроить 20 10° различных полипептидных цепей, отличающихся порядком расположения аминокислотных остатков. А сколько белков использует при работе клетка?

Вернемся к нашей микоплазме. Ей для нормальной жизни нужно приблизительно сто ферментов. Эти сто ферментов она строит из тех же двадцати аминокислот.

Могла бы строить 20 10°, а строит меньше, чем 202. Все дело в специфичности белков-ферментов. Последовательность аминокислот в белке полностью определяет его функцию и, в частности, каталитические, или ферментативные, свойства. Поэтому, если мы каким-либо образом поменяем порядок аминокислот в белке, он потеряет свои свойства, которые жизненно необходимы для клетки, для организма.

Но ведь получил американский биохимик С. Фокс так называемые протеиноиды? Получил. Их молекулярный вес порядка 30 тысяч, и, значит, они содержат около 300 аминокислотных остатков. Эти протеиноиды похожи на белки, но все-таки это не белки. Да и способ их получения уж слишком экзотичен.

Фокс брал полностью безводную смесь аминокислот, причем обязателен был избыток аспарагиновой и глюТаминовой кислот. Затем нагревал смесь до 170 градусов Цельсия. Аминокислоты сплавлялись в белковоподобное вещество, которое, правда, обладало очень маленькой каталитической активностью. Кроме того, им без Вреда могли лакомиться и крысы и бактерии.

Но полностью безводные условия на ранней Земле вряд ли могли существовать. Кроме того, если органика Образовывалась, то синтезировались не только аминокислоты, а и другие молекулы тоже. Так что опыты Фокса не слишком правдоподобны с геологической точки зрения. Таким образом, на сегодняшний день наиболее существенный из компонентов живой материи белок не удалось получить в экспериментах, связанных с предбиологическими исследованиями.

Другой важный класс макромолекул живых организмов - углеводы. Это соединения, в которых атомы углерода, водорода и кислорода находятся в соотношении 1:2:1. Будучи одним из основных компонентов нашей ежедневной пищи, углеводы поставляют значительную часть энергии, необходимой для живого организма.

Типичные углеводы, с которыми каждый из нас сталкивается ежедневно, крахмал и сахар. Поскольку это вещества растительного происхождения, а основную массу живого на 3?мле составляют растения, углеводы имеют "прочное большинство голосов" среди других органических соединений на нашей планете.

Многие углеводы, выделенные из живых организмов, так же как и белки, полимеры. Но структурной единицей углеводов является молекула сахара, например, хорошо известной всем глюкозы. Поэтому полимеры глюкозы называются полисахаридами. Глюкоза, содержащаяся в свободном виде в сладких фруктах, необходима для "энергетического" питания организма. Недаром после болезни, когда человек ослаблен, ему назначают уколы глюкозы.

Молекула глюкозы представляет собой замкнутое кольцо с шестью атомами углерода, химики называют ее шестиуглеродным сахаром. Существуют сахара с большим и меньшим числом атомов углерода. Например, очень важную роль в биохимии играют пятиуглеродные сахара - пентозы. Они являются неотъемлемой частью нуклеиновых кислот.

Если мы будем последовательно присоединять одну молекулу глюкозы к другой, то в зависимости от способа присоединения получим крахмал или целлюлозу.

Кстати говоря, целлюлозы в природе больше, чем какого-либо другого органического соединения. Целлюлоза - основной структурный элемент растительных тканей. Хлопок и лен содержат от 90 до 99 процентов чистой целлюлозы, древесина до 45 процентов. Длинные прямые пучки макромолекул целлюлозы образуют в организмах нити, прочность которых превышает прочность хорошей стальной проволоки такого же диаметра.

Сахара и полисахариды без труда получаются в процессе небиологических синтезов, что впервые показал великий русский химик А. Бутлеров. Поэтому молекулы Сахаров никогда не будут камнем преткновения при попытке создания живого из неживого.

Важная составная часть организмов - макромолекулы, которые называются липидами. Более привычное название, употребляемое в обиходе, - жиры. Они тоже построены главным образом из углерода, водорода и кислорода, хотя иногда в их состав входит фосфор. Типичная молекула липида состоит из хорошо известного каждому глицерина (одной молекулы), который соединен с жирными, кислотами.

Молекулы липидов обладают замечательным свойством. Они представляют собой цепочку, которая имеет "голову" и "хвост". "Голова молекулы" может раствориться в воде, а "хвост" нерастворим, гидрофобен. Поэтому молекулы липидов всегда ориентированы в клетке и являются одной из составных частей клеточных мембран. Совсем недавно удалось небиологическим путем синтезировать молекулы этого типа и получить из них аналоги биологических мембран.

В начале короткого рассказа о молекулах, входящих в состав живого организма, говорилось о том, что белки - наиболее существенный компонент живого. Это так. Белки - главные труженики клетки, исполнители.

Но есть еще один тип макромолекул, без которых жизнь в виде, известном на Земле, была бы невозможна. Это знаменитые нуклеи"овые кислоты.

В 1868 году, через три года после того как Г. Мендель заложил основы генетики, швейцарский врач Ф. Мишер выделил из гноя больничных бинтов новое вещество, которое он назвал нуклеином. Мишер установил, что нуклеин состоит из углерода, водорода, кислорода, азота и фосфорной кислоты.

Нельзя не подчеркнуть, что, как только заходит речь о важнейших макромолекулах, составляющих живую клетку, мы вновь и вновь сталкиваемся с замечательным свойством живого: в основе всего живого лежит химия углерода.

В 1889 году вещество, выделенное Мишером, было предложено называть нуклеиновой кислотой. Следует заметить, что Мишер нашел это соединение, изучая клеточное ядро, и, помимо получения нуклеина, что само по себе является эпохальным открытием, Мишер предположил, что именно нуклеин является генетически активным материалом. К сожалению, это осталось в то время незамеченным.

После открытия Мишера началось интенсивное исследование химии нуклеиновых кислот, но только через восемьдесят лет всем стала очевидна центральная роль, которую нуклеиновые кислоты играют в управлении клеточными процессами. Это, бесспорно, некая ирония судьбы, поскольку Мишер обнаружил нуклеин именно при попытке раскрыть химическую природу клеточного ядра.

В 1910 году было установлено, что нуклеиновые кислоты содержат в своем составе сахар, а вскоре после этого было высказано предположение, что сахар и азотистое основание (например, упоминавшийся выше аденин) объединены в общий комплекс. Этот комплекс, в свою очередь, соединен с фосфорнокислым остатком.

Углевод вместе с азотистым основанием назвали нуклеозидом, а нуклеозид вместе с фосфатной группой - нуклеотидом.

Нуклеиновые кислоты являются полимерами нуклеотидов - полинуклеотидами. В нуклеиновых кислотах используется, как правило, пять оснований - аденин, гуанин, цитозин, тимин и урацил.

К 1930 году стало ясно, что существует два типа нуклеиновых кислот, отличающихся молекулой сахара и составом азотистых оснований. Впоследствии они получили название рибонуклеиновой кислоты (РНК) и дезоксирибонуклеиновой кислоты (ДНК). В построении молекулы ДНК участвуют четыре азотистых основания - аденин, гуанин, тимин и цитозин. В РНК вместо тимина - урацил. Есть и отличие в пентозах: в состав РНК входит рибоза, а ДНК - дезоксирибоза. Ученым, занимающимся предбиологической химией, сто лет спустя после открытия Мишера удалось синтезировать нуклеозиды, нуклеотиды и их полимеры. Но полученное в лаборатории драматически отличалось от того, что делает живая клетка.

Структура клеточных нуклеиновых кислот идеальна.

Это законченное молекулярное архитектурное сооружение. Нуклеиновые кислоты - полимеры нуклеотидов, и в клетке нуклеотиды соединяются между собой всегда по одному и тому же правилу. Мы помним, что пентозы пятиуглеродные циклические сахара. Так вот, в нуклеиновых кислотах связь между нуклеотидами осуществляется через фосфатную группу, которая соединяет совершенно определенный атом углерода в пентозе одного нуклеотида с другим всегда одним и тем же (из пяти возможных) атомом углерода в пентозе другого нуклеотида. А в колбе получается хаос. Эта та же ситуация, которая случается с ребенком, когда он впервые открывает игрушку-конструктор. Чтобы построить что-нибудь стоящее, необходимо прикладывать одну деталь к другой определенным образом. Природа умеет это делать, а химики пока нет.

Кроме того, клетка способна создавать информацию.

И это главное.

Глава VII

КЛЕТКИ РАБОТАЮТ