72356.fb2 Популярная палеогеография - читать онлайн бесплатно полную версию книги . Страница 1

Популярная палеогеография - читать онлайн бесплатно полную версию книги . Страница 1

Введение

Внимание людей всегда привлекают необычные объекты и явления. Их интересует все новое и неизведанное. В глубокой древности люди с восхищением и страхом наблюдали извержения вулканов, землетрясения, солнечные затмения. Имеются самые нелепые с современных позиций объяснения многих природных явлений. Долгое время люди придерживались фантастических взглядов на происхождение и последующую историю Земли. В трудах мыслителей древности и различных сказаниях предлагались разные версии о всемирном потопе, велась речь о мифических странах, населенных диковинными животными, о райских садах и т. д. На протяжении многих тысячелетий господствовало мнение, что создание Земли имело божественное начало. Это и нашло отражение в Ветхом завете[1]. Постулаты всех религий так или иначе утверждали божественный акт. Признание неизменности лика Земли со времени его создания, отсутствия эволюции животного и растительного мира полностью исключало какой-либо научный подход. Опровержение церковных догм сурово каралось. Однако заложенное в человеческом сознании стремление познать природу вещей, выявить причинно-следственные связи и связать прошлое с настоящим и будущим тем не менее приводило к накоплению фактов, противоречащих религиозным догмам.

Передовые мыслители древности убеждались на конкретных примерах, что рельеф земной поверхности, растительный и животный мир, точнее все то, что теперь принято относить к ландшафту, с течением времени изменялись. Дошедшие до нас труды древних ученых хотя и имеют в настоящее время лишь исторический интерес, поскольку в них научные выводы часто переплетаются с фантастическими домыслами, но в некоторых из них встречаются блестящие и глубоко научные идеи, подтвержденные многими и многими поколениями. Так, по мнению Аристотеля (384–322 гг. до н. э.), ландшафт изменялся под влиянием медленных опусканий и поднятий земной поверхности. Первые обоснованные данные об изменениях физико-геологических условий прошлого появились в трудах среднеазиатский мыслителей средневековья. Аль-Бируни (972—1048 гг.), Абу-Али Ибн-Сина (Авиценна, 980-1037 гг.), а позднее и западноевропейские ученые эпохи Возрождения высказывали идеи о существенном изменении лика Земли. Например, Леонардо да Винчи (1452–1519 гг.) на основании находок скелетов морских животных высоко в горах Италии сделал предположение о том, что эти районы в древности были покрыты морем.

Основы учения о геологическом прошлом в России заложил М. В. Ломоносов (1711–1765 гг.). В книге «О слоях земных» в 1763 г. он писал, что «Русская равнина, по которой ныне люди ездят, обращаются, ставят деревни и города, в древние времена была дном морским». Он считал, что климат Сибири в прошлом был теплее, чем ныне: «В северных краях в древние века жары бывали». Об этом же, по его мнению, свидетельствовали «следы трав индейских…, раковины морских моллюсков, обитающих теперь в морях под жарким поясом».

Это были первые, порой наивные попытки объяснить изменчивость Земли. Только в XIX в. благодаря передовым идеям в естествознании коренным образом изменились взгляды ученых на происхождение и развитие Земли. Стало ясно, что земная кора сравнима с книгой, в которой условными знаками написана история Земли, а слои и напластования пород представляют собой ее страницы. Поэтому если умело подобрать ключ к этим условным знакам, то можно с интересом прочесть историю нашей планеты.

Реконструкцией физико-географических условий, существовавших на Земле в далеком геологическом прошлом, занимается наука, называемая палеогеографией. В то время как географ изучает особенности физико-географической среды современной эпохи, т. е. рельеф земной поверхности, распределение суши и моря, циркуляцию воды и атмосферы, климат, распределение растительного и животного царства, палеогеограф восстанавливает физико-географическую обстановку различных периодов эпох далекого прошлого.

Для получения достоверных сведений о природных условиях, существовавших на Земле, необходимо знать условия современного осадконакопления и характер местообитания животных и растений. Только полный и всесторонний анализ осадконакопления, современной биосферы и процессов, протекающих на земной поверхности, правильное их применение при палеогеографических исследованиях позволяют создать верную картину физико-географической обстановки геологического прошлого. Эти сведения улавливаются по тем фрагментарным документам геологической летописи, которые оказались запечатленными в составе, строении и распространении горных пород и различных окаменелостей.

Метод реконструкции явлений и процессов, протекавших в отдаленные от нас эпохи, основанный на аналогии с современными процессами, носит в геологии название метода актуализма. Он основывается на двух весьма важных положениях. Во-первых, законы природы оставались неизменными в течение всей геологической истории. Во-вторых, в течение всего хода геологического развития Земли действовали те же самые процессы, что и ныне, и темпы этих далеких процессов мало отличались от современных. Таким образом, изучая настоящее, мы глубже и, главное, правильнее можем познать прошлое и видеть реалистические перспективы развития процессов в литосфере и атмосфере.

Периодизация истории Земли

По современным представлениям, Земля, как и остальные планеты Солнечной системы, образовалась около 4,6–5 млрд. лет назад из допланетного холодного газопылевого облака, вращающегося по определенной орбите. О первом миллиарде лет жизни нашей планеты почти полностью отсутствуют какие-либо фактические данные. Предполагается, что она в то время была довольно однородной по составу и относительно холодной. Ее ландшафт был подобен ландшафту современной Луны.

Земная поверхность находилась под непрерывным «обстрелом» планетеземалей — астероидоподобных объектов размерами в километры, образованных в результате слипания комков межзвездной пыли. За счет соударения крупных планетеземалей температура постепенно возрастала. В первые 500 млн. лет существования Земли никакой атмосферы еще не было. По земной поверхности гулял солнечный ветер, т. е. распространялись потоки заряженных частиц. Так называемый догеологический этап развития Земли завершился в тот момент, когда произошло перераспределение масс вещества в теле планеты с образованием ядра. Этот процесс сопровождался бурным выделением тепла. Благодаря мощным конвективным потокам была взломана и переработана верхняя (холодная) оболочка Земли. Через многочисленные жерла из глубин на земную поверхность было выброшено огромное количество газов и водяного пара, которые и образовали первичную атмосферу. Это, по-видимому, случилось около 4 млрд. лет назад.

Само собой разумеется, что разделение истории Земли на догеологический и геологический этапы довольно условно. Положение возрастной границы между ними отодвигается по мере выявления все более древних горных пород.

Основными критериями для периодизации геологической истории Земли являются процессы и события, приведшие к качественным изменениям состава и структуры географической оболочки, которую составляют литосфера, биосфера, гидросфера и атмосфера. Примерами таких знаменательных событий служат не только возникновение атмосферы, гидросферы и биосферы, но и главным образом преобразования, отразившиеся на внешнем облике нашей планеты, — интенсивное проявление магматизма, горизонтальных и вертикальных движений земной коры, а также возникновение и расселение организмов и т. д.

Обычно все геологические исследования начинаются с изучения состава отложений и установления их возраста (геохронологии), так как без этого невозможно восстановить геологическую историю. Существует ряд методов, с помощью которых определяется относительный возраст горных пород. Первую информацию дают в основном последовательность напластований в ненарушенном состоянии (нижележащие породы древнее вышележащих), состав отложений и окаменелости, заключенные в них. С помощью изучения ископаемых остатков выявляется последовательная смена неповторяющихся в разрезах фаунистических, флористических и палинологических (спорово-пыльцевых) комплексов, которые одновременно отражают этапность их исторического развития. Неповторимость комплексов организмов основывается на главном принципе эволюционной теории — необратимости эволюции.

С помощью палеонтологических и стратиграфических методов устанавливается относительная геохронология, которая, однако, не дает реального представления о продолжительности геологических периодов и не позволяет судить об истинном возрасте Земли. После открытия естественной радиоактивности геологи получили надежный метод определения абсолютного возраста горных пород, основанный на процессах радиоактивного распада атомов таких элементов, как уран, торий, калий, стронций, рубидий, цезий, углерод и другие, в изверженных и осадочных горных породах.

Возраст тектоно-магматических эпох в истории Земли

Накопление результатов исследований о возрасте различных изверженных пород позволило не только определить продолжительность геологических периодов, установленных методом относительной геохронологии, но и выделить наиболее древние горные породы Земли. Документированные следы жизни на Земле имеют возраст свыше 3,2 млрд. лет, самые древние осадочные породы — около 3,8 млрд. лет. В истории Земли существовали эпохи усиленного магматизма. Эти эпохи характеризовались высокой степенью тектонической активности, т. е. одновременно с излияниями лавы и внедрением магмы происходили значительные вертикальные и горизонтальные движения земной коры. Данные о возрасте изверженных пород дают возможность установить существование сравнительно продолжительных эпох повышенной магматической и тектонической активности и длительных периодов относительного покоя. Это, в свою очередь, позволяет провести естественную периодизацию истории Земли по степени тектонической и магматической интенсивности.

Общая геохронологическая шкала

О. Г. Сорохтин на основании определения времени образования гранитных интрузий уточнил возраст тектоно-магматических эпох (циклов) в истории Земли. Вместе с тем необходимо отметить, что тектоническая и магматическая активность в отдельных районах по времени часто не совпадает с тектоно-магматическими эпохами планетарного характера. Следовательно, в разных районах мира возможны довольно существенные разбросы возраста тектоно-магматических эпох.

Состав пород в типовых разрезах, условия их залегания и находившиеся в них ископаемые остатки в конце XIX в. позволили заложить основу сводной (планетарной) геохронологической шкалы. В настоящее время она существенно дополнена, детализирована и обоснована не только событиями жизни органического мира, сменой одних групп организмов другими, но и абсолютными датировками. История Земли разделена на четыре крупных отрезка времени — катархей, архей, протерозой и фанерозой. Иногда в протерозое выделяют афебий, рифей и венд. Причем рифей в Канаде называют альгонком а в Китае — синием. Фанерозойский эон (эон — дословно означает длительный прмежуток времени. Он объединяет несколько геологических эр), означающий время явной жизни, состоит из палеозоя, мезозоя и кайнозоя. Протерозой, архей и катархей называют криптозойским эоном т. е. временем скрытой жизни.

Геохронологическая шкала представляет собой идеализированный, а не реальный геологический объект, так как ни на одном континенте нет непрерывной последовательности всех известных возрастных подразделений. Это вызвано тем, что ни один крупный бассейн седиментации (осадконакопления) не развивался в неизменных границах в течение всей геологической истории Земли. Многократно условия морского осадконакопления сменялись континентальными, и нередко седиментация прерывалась в результате подъема территории. Это сопровождалось денудацией и размывом.

По вполне понятным причинам о первом миллиарде лет существования Земли, т. е. о катархее, нет фактических данных. Можно только предполагать, что в катархее, по-видимому, проявился очень активный вулканизм. Во время излияния вулканических лав выделялся значительный объем газов. В дальнейшем это привело к созданию не только земной коры, но и первичной атмосферы.

В течение белозерской и Кольской тектоно-магматических эпох (начало и середина архея) протекали процессы гранитизации и одновременно с ними возникали первые осадочные бассейны. Для этого времени известны не только терригенные (правда, подвергшиеся сильному метаморфизму) толщи, но и карбонатные породы, и даже образования кор выветривания.

В кенорскую тектоно-магматическую эпоху в конце архея были сформированы ядра будущих крупнейших устойчивых геоструктурных элементов Земли — ядра континентальных платформ. В последующие тектоно-магматические эпохи ядра платформ продолжали нарастать.

В течение кенорской, альгонкской, раннекарельской, балтийской, буларенинской и карельской тектоно-магматических эпох сформировались фундаменты всех известных древних континентальных платформ: Восточно-Европейской, Сибирской, Китайской, Таримской, Индостанской, Африкано-Аравийской, Восточно-Австралийской, Северо- и Южно-Американской. На протяжении почти 1 млрд. лет (от 2,7 до 1,67 млрд. лет назад) происходило формирование первичного гранитогнейсового слоя земной коры, а наличие карбонатных осадочных пород способствовало образованию щелочных интрузий. Огромные плутоны гранитоидов, площадь которых превышала тысячи квадратных километров, среди древнейших осадочных пород фиксировали обширные платформенные структуры, называемые щитами. Примеры таких участков — Балтийский, Украинский, Алданский, Канадский, Гвианский, Бразильский, Аравийский щиты.

Предполагается, что в протерозое существовал огромный континент Мегагея, или Большая Земля, окруженный единым Мировым океаном.

Начиная с раннего рифея, древние платформы и особенно щиты становятся наиболее устойчивыми во времени и в пространстве структурными элементами земной коры. Позднее в пределах платформ возникли области плавного и сравнительно небольшого прогибания (синеклизы), которые раскалывались вдоль систем глубинных разломов, проходивших в пределах консолидированных древних подвижных поясов. Таким образом появились крупные грабенообразные прогибы — авлакогены. Примерами могут служить Катангский авлакоген на Африканской платформе и Днепровско-Донецкий на Восточно-Европейской.

На протяжении последующих после раннего рифея тектоно-магматических эпох древние платформы или продолжали наращиваться за счет подвижных поясов, образующихся на их периферии, или раскалывались на части и впоследствии испытывали разнонаправленные перемещения с различной скоростью. Вместе с тем в рифее и фанерозое происходило постепенное угасание магматизма и одновременно увеличивалась неоднородность строения земной коры.

Готская тектоно-магматическая эпоха характеризовалась на большинстве платформ и окружающих их подвижных поясов развитием гранитизации дорифейских пород и значительного метаморфизма.

В тектоно-магматические эпохи среднего и особенно позднего рифея продолжались гранитизация в подвижных поясах и дальнейшее наращивание площади платформ. Магматизм катангской (раннебайкальская) и позднебайкальской тектоно-магматических эпох на платформах проявился по-разному. Однако их общими чертами являлись, с одной стороны, интенсивная складчатость, а с другой — раскол и перемещение крупных платформенных глыб (литосферных плит).

В результате активной магматической и тектонической деятельности в ранне- и позднебайкальские эпохи произошли сближение и соединение в единый суперконтинент Гондвану пяти крупнейших платформ южного полушария — Африкано-Аравийской, Южно-Американской, Австралийской, Антарктической и Индостанской. Гондване в северном полушарии противостояли разрозненные Восточно-Европейская, Северо-Американская, Сибирская и Китайская платформы.

Каледонская тектоно-магматическая эпоха характеризовалась не только усилением магматизма, но и подъемом и образованием в северном полушарии нового суперконтинента Лавразии. Этот суперконтинент, состоящий из Северо-Американской, Восточно-Европейской, Сибирской и Китайской платформ отделялся от Гондваны крупным океаном — палео-Тетисом

В отличие от более древних этапов тектоно-магматические эпохи фанерозоя вследствие сохранности горных пород и их хорошей изученности подразделяются на целый ряд фаз. Последние, так же как и сами тектоно-магматические эпохи характеризовались высоким стоянием континентов над уровнем моря (преобладание воздымания), развитием магматизма и значительными тектоническими движениями. Такие фазы названы геократическими. В противоположность им талассократические фазы продолжительнее по времени. Для них характерно активное прогибание платформ и развитие трансгрессии, т. е. наступания моря на сушу, и мощное осадконакопление.

В составе каледонской тектоно-магматической эпохи выделяются таконская и позднекаледонская фазы. В результате столкновения континентов были образованы горно-складчатые системы, носящие название каледонид. Они сохранились на западе Северо-Американской платформы (Аппалачи), в Центральной Азии (Центральный Казахстан, Алтай, Саяны, Монголия), Восточной Австралии, на о-ве Тасмания и в Антарктиде.

В герцинскую тектоно-магматическую эпоху произошло соединение в единый материк Пангею Гондванского и Лавразийского суперконтинентов. Так же, как и в позднем рифее, Пангею омывал единый океан. Герцинская тектоно-магматическая эпоха подразделяется на бретонскую, судетскую, астурийскую, заальскую и пфальцскую фазы. Столкновение континентов привело к возникновению крупных горных систем, носящих название герцинид. Все они располагаются на перифериях древних платформ. К ним относятся Тибет, Гиндукуш, Каракорум, Тянь-Шань, Алтай, Куньлунь, Урал, горные системы Центральной и Северной Европы, Южной Америки, Северной Америки (Аппалачи, Кордильеры), Северо-Западной Африки и Восточной Австралии. В эту же эпоху в результате консолидации складчатых областей образовались так называемые эпигерцинские плиты, или молодые платформы, — Скифская, Туранская, Западно-Сибирская плиты и др.

В киммерийскую тектоно-магматическую эпоху, подразделяющуюся на ранне- и позднекиммерийскую фазы, произошли внедрение интрузий различного состава в пределы подвижных поясов, распад Пангеи и горообразование. В течение триасового, юрского периодов и раннемеловой эпохи вновь возникли супер-континенты Лавразия и Гондвана, разделенные молодым океаном Тетис и Южной Атлантикой. Горообразовательные процессы проявились главным образом на окраинах Лавразии. Значительные движения испытали и ранее возникшие горные системы Аппалачей и Кавказа.

Геохронологическая шкала фанерозоя

Альпийская тектоно-магматическая эпоха с ларамийской, пиренейской, савской, штирийской, аттической, роданской и валахской фазами началась в конце мелового периода и продолжается до настоящего времени. С ней связаны внедрение интрузий кислого, основного и щелочного составов в подвижных поясах, возникновение океанов и континентов современного очертания, а также величайших горных систем — Гималаев, Альп, Динарид, Кавказа, Анд, Кордильер и т. д.

О последних 570 млн. лет истории Земли учеными накоплено много фактических данных. Богатство органическими остатками фанерозойских отложений позволило расчленить их на более мелкие подразделения. Основой такого расчленения служит эволюция животного и растительного мира, выраженная в возникновении и исчезновении целых семейств, отрядов, родов и видов организмов. Так, для палеозоя (эра древней жизни) было характерно господство морских беспозвоночных, рыб, папоротников и плаунов, для мезозоя (эра средней жизни) — пресмыкающихся и голосеменных, для кайнозоя (эра новой жизни) — млекопитающих и покрытосеменных.

Начало биографии Земли

Уже в глубокой древности человечество волновала мысль о причинах возникновения нашей планеты и даже всей Солнечной системы. Хотя абсолютное большинство идей и предположений были фантастичными, все же некоторые из них поражают нас своей близостью к современным представлениям. Большую помощь в формировании представлений о рождении Земли оказали метеориты, эти пришельцы из далекого космоса. Оказалось, что средний состав метеоритов близок к земному, а их возраст не менее 4–5 млрд. лет.

Согласно гипотезе академика О. Ю. Шмидта, Солнечная система образовалась путем аккумуляции твердого вещества, рассеянного в космическом пространстве. Сгущение или гравитационное сжатие газового пылевого облака до состояния вещества звезд привело к повышению внутренней температуры облака, и с этого момента стали действовать термоядерные реакции, в процессе которых водород превращался в гелий и происходило обильное выделение огромного количества энергии.

Новая звезда — наше Солнце — родилась в чудовищных вихрях термоядерных реакций. Произошло это около 6–7 млрд. лет назад. Во время термоядерных взрывов в космическое пространство выбрасывались необозримые газовые плазменные облака. Из этого вещества в дальнейшем возникли планеты, кометы, астероиды и другие космические тела. Несколько сот миллионов лет газообразное вещество протопланетного облака, или первичного вещества планет, остывало.

Около 5,5 млрд. лет назад из холодного протопланетного вещества возникла Протоземля. Однако ее так же, как и зачатки других планет, еще нельзя было назвать планетой в полном смысле этого слова, поскольку в ее пределах отсутствовали твердые участки. В течение сравнительно долгого времени на нашей планете протекали реакции и процессы совершенно иного типа, чем те, которые мы обычно привыкли называть геологическими процессами. Поэтому этот далекий этап развития Протоземли носит название догеологического, или астрономического.

Согласно современным представлениям, первичная Земля была холодной. По сути дела, это было беспорядочное скопление космического вещества. Под влиянием гравитационного уплотнения, постепенно нагреваясь от бесчисленных ударов метеоритов и астероидов и в результате выделения тепла при распаде радиоактивных элементов, земное вещество вновь стало разогреваться. Одни ученые считают, что температура разогрева составляла десятки тысяч градусов, а другие — не более 1000 °C.

Разогрев Протоземли способствовал дифференциации ее вещества: во внутренние части постепенно опускались тяжелые вещества, а на периферии скапливались сравнительно легкие. Эти процессы привели к разделению земных недр на ядро и мантию. Мантия Земли действует как гравитационный сепаратор, который доставляет к границе внешнее ядро — мантия свежее вещество. Тяжелые соединения железа остаются, а легкие возвращаются в верхние слои.

Сепарация вещества в недрах Земли протекала довольно медленно, и мантийное вещество множество раз совершало кругооборот. Некоторые исследователи связывают полный круг обращения мантийного вещества с длительностью глобальных геологических процессов, в частности вулканической активностью, горообразованием, трансгрессией (наступление) моря.

Долгое время после своего рождения Земля оставалась безжизненной и неуютной планетой. Только космический холод и солнечный ветер господствовали на поверхности планеты. Твердая оболочка на ее поверхности была тонкой и хрупкой, потоки раскаленного материала из глубин Земли быстро достигали ее поверхности и растекались на огромные расстояния.

Атмосферы еще не существовало и это делало земную поверхность очень уязвимой для обстрела из космоса метеоритами и космической пылью. Над планетой поднимались тучи пепла и газов, поступающих из недр во время грандиозных извержений. К земной поверхности медленно двигался свободный кислород, освобождаемый в процессе дифференциации вещества. Кислород впервые появился на границе ядра и мантии, т. е. там, где происходили сепарация и переработка вещества. Увлекаемый конвективными потоками кислород постепенно уходил вверх, и долгое время весь он расходовался на окисление железа и его соединений.

Рождение атмосферы и гидросферы

Атмосфера возникла в начальные периоды формирования земной коры. Существуют две гипотезы ее образования. В первой атмосфера рассматривается как производная первичного материала, оставшегося от упрощенных флюидов, которые когда-то обрамляли расплавленную Землю. По второй гипотезе, атмосфера рассматривается как вторичное образование, возникшее при освобождении свободных химических элементов и соединений из лавы, извергавшейся на земную поверхность. Благодаря этой лаве была создана первичная земная кора. Большинство ученых придерживаются второй гипотезы происхождения атмосферы, считая, что в противном случае любая первичная атмосфера на ранней стадии развития Земли была бы сравнительно быстро ей утеряна.

Таким образом, условно можно считать, что источником веществ, составляющих первичную атмосферу, служили продукты выплавления горных пород земной коры, мантии и ядра. Считается что она была бескислородной. Крупнейший американский геохимик Г. Юри высказал мнение, что атмосфера могла состоять из смеси водяного пара, водорода, метана, аммиака и сернистого водорода. Английский геохимик П. Клауд считает, что в ранней атмосфере преобладали вода, углекислый газ, окись углерода, азот, хлористый водород, водород и сера. Следовательно, атмосфера состояла только из летучих и легких газообразных веществ, которые в момент формирования Земли входили в состав твердых веществ. Свободной воды не существовало, она была связана в гидроокислах, азот — в нитридах и, возможно, нитритах, кислород — в окислах металлов, углерод — в карбидах и карбонатидах и.т.д.

Увеличение мощности атмосферы и возникновение гидросферы объясняется освобождением из пород верхней мантии при интенсивных вулканических процессах водяного пара и газов. Действительно, газы, выделяющиеся при извержении современных вулканов, содержат большое количество водяного пара. Например, при извержении вулканов гавайского типа (вулканы гавайского типа характеризуются излиянием базальтовой подвижной магмы, бедной газам; застывание происходит медленно) в газах при температуре 1000–1200 °C содержится около 80 % воды и не менее 6 % углекислого газа. Встречается также значительное количество хлора (40 %), метана (до 3–5 %) и аммиак. Из лав при высокой температуре, кроме водяного пара, выделяются такие соединения, как борная, соляная и фтористая кислоты, сероводород и др.