73093.fb2
После всех попыток узнать, какие силы в корне действуют на язык и вызывают его раздражение, я положил приблизительно пол-унции корня в воду: в размягченном состоянии его легче изучать. Кусочек корня оставался в воде около трех недель. 24 апреля 1676 года я посмотрел на эту воду под микроскопом и с большим удивлением увидел в ней огромное количество мельчайших живых существ.
Некоторые из них в длину были раза в три-четыре больше, чем в ширину, хотя они и не были толще волосков, покрывающих тело вши… Другие имели правильную овальную форму. Был там еще и третий тип организмов — наиболее многочисленный — мельчайшие существа с хвостиками. Животные четвертого типа, шнырявшие между особями трех других, были необыкновенно малы — настолько малы, что, по-видимому, и целая сотня их, выстроенная в ряд, не превысила бы песчинки. Чтобы сравняться с ней, потребовался бы по крайней мере десяток тысяч этих существ!
Характерная черта науки и прогресса состоит в том, что они постепенно открывают нашему взору все новые и новые области.
Было это очень давно, когда третья планета Солнечной системы получила нового обитателя — «единственное существо, сознающее свое место в природе», как охарактеризовал его У. М. Симпсон из Гарвардского университета. Шведский естествоиспытатель XVIII века К. Линней в своем сочинении «Система природы» дал этому существу имя Homo sapiens (человек разумный). Человек постепенно знакомился с окружающей его средой, стараясь использовать ее в своих целях. Сначала он жил в пещерах и, охотясь, постепенно узнавал царство животных; по мере развития скотоводства он еще более расширял свои познания. Не обошел он своим вниманием и царство растений, давшее ему возможность перейти со временем на оседлую жизнь землепашца.
Но кроме растений и животных были в окружающей среде и другие существа, которые сопровождали человека от его рождения до смерти. О них он ничего не знал, потому что не мог их видеть. Нередко эти существа врывались в его жизнь, порождая болезни и сея смерть.
В процессе покорения природы человек использовал этих невидимых спутников, даже не догадываясь об их существовании. Он научился печь хлеб из кислого теста, делать вино из перебродившего сока плодов, приготовлять пиво из зерен некоторых злаков.
Проходили века. Человек все шире и глубже познавал и осваивал природу, он стал удобрять почву, изменять течение рек, покрывать поля и луга каналами, приносящими животворную влагу или уносящими ее избыток. В неизведанные и таинственные моря вышли его лодки и корабли. Он поднимался на гребни гор и покорял простирающиеся за ними земли. Но всегда и повсюду человека сопровождали невидимые спутники; одни из них поражали его частыми и неожиданными болезнями, портили запасы пищи, другие помогали сохранять плодородие почвы, были надежными помощниками в приготовлении хлеба и напитков.
Шестнадцатый и семнадцатый века отмечены в истории многими значительными событиями. Но для нас, естественно, важно прежде всего то, что в этот период были заложены основы современной науки.
Английский философ XVI века Фрэнсис Бэкон в книге «Новый органон» высказал смелую мысль, что наблюдения — это единственный путь к познанию видимого мира, путь, который уже приносил свои ценные плоды. Так, в 1543 году великий польский астроном Николай Коперник на основе собственных наблюдений доказал, что Земля является планетой Солнечной системы, а не наоборот, как это думали раньше. Выдающийся итальянский мыслитель Джордано Бруно в 1600 году собственной жизнью расплатился за поддержку взглядов Коперника, а спустя тридцать три года итальянский астроном Галилео Галилей спас свою жизнь, отрекшись под давлением инквизиции от этих «еретических» суждений.
Развитие астрономии сделало огромный шаг вперед в начале XVII века, когда голландские шлифовальщики стекла создали свои первые подзорные трубы.
Это был инструмент, появление которого предсказывал еще в XIII веке английский философ и естествоиспытатель Роджер Бэкон в своей необычной «Эпистоле»: «Прозрачные стекла можно расположить так, что очень отдаленные предметы покажутся близкими: на большом расстоянии мы сможем различить мелкие буквы и как бы приблизить к себе далекие звезды».
Живая природа также привлекала внимание исследователей. Итальянский врач Андреас Везалий в 50-х годах XVI века положил начало современной анатомии человека, а английский медик Уильям Гарвей в 1628 году описал цикл кровообращения в человеческом организме.
Линзы, изготовлявшиеся шлифовальщиками стекол, можно было расположить иначе, не так, как в телескопе. И тогда они увеличивали очень мелкие предметы. Так появились первые микроскопы, которые раскрывали перед исследователями живой природы картины не менее интересные, чем телескоп на звездном небе.
Немецкий естествоиспытатель Атанасиус Кирхер использовал микроскоп для изучения болезней. С помощью своего очень несовершенного прибора он рассматривал гной и кровь людей, пораженных сифилисом. Исследуя гниющее мясо, скисшее молоко и другие жидкости, он обнаружил в этих различных веществах, по его собственному выражению, «живых червей». Возможно, он действительно видел личинки червей или насекомых, а может быть, и кровяные тельца.
Во всяком случае, он счел их возбудителями болезней и был уверен, что они переносятся мухами, которые садятся на больных и умирающих людей, а потом, загрязняя своими экскрементами пищу, заражают таким образом здорового человека.
Усовершенствование микроскопа позволило английскому ученому Роберту Гуку впервые использовать этот прибор для тонких научных исследований. Проводя наблюдения над строением растений, он с удивлением увидел в ткани древесной пробки правильные ячейки, названные им впоследствии клетками и изображенные в книге «Микрография» (1665). Эти работы положили начало теории клеточного строения живых организмов.
Но ни один из перечисленных ученых в свои несовершенные, слабо увеличивающие микроскопы не смог увидеть того, что удалось открыть их современнику, простому голландцу, заслужившему тем не менее титул отца микробиологии.
Он родился в 1632 году в голландском городе Делфте (в то время в Европе все еще продолжалась Тридцатилетняя война). В Амстердаме он обучался торговому делу, но уже в возрасте 22 лет вернулся в родной город, где стал стражем судебной палаты (что по современным понятиям соответствует сочетанию дворника, истопника и уборщика в одном лице). Его страстным увлечением было изготовление оптических линз-чечевиц. Он научился прекрасно шлифовать стекла, а потом стал наблюдать различные мелкие объекты, размеры которых чудесным образом увеличивались под его линзами в двести и более раз. Это было довольно трудным занятием. Один из его современников писал: «Предмет нужно подставить под линзу, линзу придвинуть к самому глазу, а вот нос при этом девать решительно некуда!» На этих-то линзах-чечевицах, называвшихся «микроскопиями», и зародилась слава Антони ван Левенгука.
Под микроскопом все выглядело необычным и можно было наблюдать мелкие объекты, невидимые невооруженным глазом. Левенгук рассматривал крошечных насекомых, капельки воды, слюны, мочи, крови. О его наблюдениях стало известно в Лондонском королевском обществе. С 1673 года и до самой смерти этот не получивший систематического образования человек регулярно посылал в Общество «письма», в которых описывал свои наблюдения, поражавшие английских ученых на протяжении целых 50 лет.
В 1676 году Левенгуку впервые удалось увидеть бактерии. В это время его интересовало совсем другое — почему корни некоторых растений столь едки и остры на вкус. Чтобы понять это, он клал корни на некоторое время в воду, а затем наблюдал под микроскопом капельки полученного настоя. В них он увидел мелких «зверушек», которые сновали в воде и имели самые разные формы. Огромное множество так же необычайно быстро двигавшихся мелких «зверушек» нашел он и в зубном налете. «В полости моего рта, — писал он в очередном послании Обществу, — их было, наверное, больше, чем людей в Соединенном Королевстве». К этому сообщению он приложил рисунки, изображавшие «зверушек». В них, без сомнения, можно узнать различные формы бактерий. Такими впервые увидел их глаз человека.
«Сколько чудес таят в себе эти крохотные создания!» Такую фразу можно найти в его 76-м послании Лондонскому королевскому обществу, помеченном 15 октября 1693 года. Наблюдая их под линзами собственного изготовления, он отмечал, что по своему строению эти мелкие существа напоминают некоторые крупные организмы. Интересно его замечание по этому поводу: «… рассматривая мелких зверушек с их ножками, я думаю о том, что они в десять тысяч раз тоньше волоска из моей бороды, а есть и более мелкие. Они должны иметь приспособление для передвижения и какие-то вместилища для переноса пищи…»
Современные микробиологи легко могли бы доказать Левенгуку, что он ошибался. Микробы не имеют ножек. Бактерии передвигаются в жидкой среде за счет активного движения тоненьких жгутиков. Толщина этих образований — около пяти стотысячных долей миллиметра. Но даже если бы Левенгук увидел бактериальную клетку со жгутиками такой, какой ее можно видеть в электронном микроскопе, он, вероятно, говорил бы о «хвостиках», при помощи которых эти «зверушки» движутся подобно головастикам.
Зарисовки бактерий, выполненные Левенгуком.
В 1700 году Левенгук обнаружил в воде из канала любопытные организмы, относимые нынешними микробиологами к водорослям Volvox. Королевское общество получило о них такую информацию: «Я наблюдал великое множество плавающих в воде зеленых шарообразных существ величиной с песчинку. Когда я положил их под микроскоп, то увидел, что это не простые шарики. Их поверхность была покрыта торчащими выростами, показавшимися мне трехгранными и направленными своими верхушками в одну сторону. На всей поверхности одного шарика оказалось около 80 таких выростов, правильно расположенных на определенном расстоянии друг от друга. Шарики слагались в небольшие комочки, на каждом комочке насчитывалось, таким образом, до двух тысяч выростов. Интересно, что эти комочки никогда не прекращают движения, которое осуществляется перекатыванием».
Новейшие наблюдения над вольвоксами показали, что своим вращением они напоминают маленькие планеты, как бы плывущие в капельке воды — своей собственной «микровселенной». Они всегда движутся к свету и никогда в обратном направлении. Колония вольвоксов состоит из 500—50 000 клеточек (или «телец», как писал Левенгук), а планеты они действительно напоминают еще и тем, что, вращаясь, сохраняют всегда одно и то же вертикальное положение своей оси, имея, таким образом, некое подобие «полюсов». Теперь мы уже знаем, что их «северный полюс» обеспечивает им питание, а «южный» служит местом размножения. Именно здесь каждый час от материнской колонии отделяются все новые и новые маленькие колонии, являющиеся как бы прообразом многоклеточных организмов.
Левенгук написал Лондонскому королевскому обществу свыше 170 писем, а в своем завещании оставил ему 26 знаменитых «микроскопий». Один из современных членов этого общества, профессор Н. У. Пири на заседании, посвященном 240-летию со дня смерти Левенгука, сказал:
«Письма Левенгука полезно перечитывать. В них отражен человек глубоко разносторонний, интересующийся всем на свете. Он имел свои, твердо установившиеся взгляды и обладал способностью убедительно их отстаивать. Из Парижа ему сообщали, что не смогли заметить никаких «шариков» во многих из описанных им материалах. Он же отвечал, что это не имеет значения, пусть приедут к нему в Голландию и убедятся в существовании этих шариков».
«Отец микробиологии» открыл для своих современников невидимый ранее мир микроорганизмов, которые присутствуют всюду — в воде и гниющем мясе, в остатках пищи и слюне человека, в молоке и воздухе.
Обнаружение микробов в самых различных материалах способствовало распространению споров о происхождении живых организмов. Еще с далекой древности люди привыкли к мысли, что живая материя возникает в природе из неживой.
Аристотель считал, что кроме живых существ, рождающихся от себе подобных, есть и самозарождающиеся организмы. Животные появляются на свет не только «в результате спаривания, но и из перегнойной почвы или навоза». Черви и различные насекомые, например, самозарождаются из росы, перегнойной почвы, сухой древесины.
Английский врач Уильям Гарвей, открывший в XVII веке кровообращение, подверг сомнению идею о самозарождении организмов и высказал мысль, что «все живое — из яйца» (Omne vivum ex ovo), иными словами: при данном состоянии природы живые организмы никогда не возникают из неживой материи, а всегда от себе подобных.
Левенгук в одном из писем Королевскому обществу писал: «Я полагаю, что мы уже можем быть достаточно уверены в том, что все животные, как бы малы они ни были, зарождаются не в результате процессов гниения, а только размножением себе подобных». Его современник итальянский ученый Франческо Реди экспериментально доказал, что мухи не зарождаются из гнилого мяса. Он показал, что личинки мух появляются на мясе только в тех случаях, когда живые мухи откладывают на этой питательной среде свои яйца.
После открытия микробов снова возник вопрос, есть ли у этих мельчайших существ родители или они появляются и из неживой материи. Английский натуралист Джон Нидхем попытался ответить на этот вопрос собственными опытами: он вскипятил бульон из баранины, налил его в сосуд и плотно заткнул пробкой. Через несколько дней в сосуде появились микробы. Чем не явное доказательство, что микробы могут возникать из неживой материи? Конечно же, в этой мертвой материи заключена некая таинственная жизненная- сила, способствующая зарождению живых «зверушек»!
Опыты Нидхема повторил итальянский ученый Ладзаро Спалланцани, который установил, что при продолжительном кипячении бульона «жизненная сила» не порождает никаких микробов. Но если тотчас после кипячения открыть доступ воздуху, в бульоне через некоторое время начинают кишеть микробы. Значит, решил Спалланцани, продолжительное кипячение уничтожает все микробы, находившиеся в отваре, и они вновь появляются в нем вместе с входящим в сосуд воздухом. Кроме того, Спалланцани наблюдал под микроскопом, как в капельке мясного отвара один микроб разделился на две одинаковые части, каждая из которых со временем вновь делилась, порождая таким образом все новые и новые микробы. Все это заставило его выступить с утверждением, что и микроорганизмы происходят от себе подобных.
Французский физик Каньяр де ля Тур в XIX веке установил, что в брожении пива участвуют дрожжи — мелкие микроорганизмы, способные очень быстро размножаться в бродящей жидкости. Он доказал, что дрожжи никогда не возникают из неживой материи, что процесс брожения идет только в их присутствии и ими же самими вызывается.
Подобные наблюдения проводил и немецкий естествоиспытатель Теодор Шванн, который утверждал, что мельчайшие микробы, обнаруживаемые в гниющем мясе, и являются причиной его гниения.
Однако споры о самозарождении не прекращались. Парижская Академия наук в 60-е годы XIX столетия предложила награду тому, кто точными и достоверными опытами окончательно разрешит этот спор.
Выдающийся французский ученый Луи Пастер на основании многократных опытов и проведенных им ранее наблюдений пришел к определенным выводам и предстал перед широкой аудиторией в Сорбонне 7 апреля 1864 года, чтобы дать ответ на этот важный вопрос. В тот день здесь собрался весь цвет культурного Парижа. Пастер изложил обобщающие заключения о происхождении бактерий и так высказался о сторонниках теории самозарождения: «Нет, сегодня не имеется ни одного известного факта, с помощью которого можно было бы утверждать, что микроскопические существа появлялись на свет без зародышей, без родителей, которые их напоминают. Те, кто настаивает на противоположном, являются жертвой заблуждений или плохо проделанных опытов, содержащих ошибки, которые они не сумели заметить или которых они не сумели избегнуть»[1]. Пастер убедительно доказал присутствие микробов в воздухе, на всех окружающих нас предметах и в некоторых жидкостях, где идут процессы разложения или брожения. Сами микробы не являются продуктами разложения, напротив, гниение наступает именно в результате их жизнедеятельности.
Пастер был по образованию химиком и лишь позднее стал заниматься биологией, которой увлекались в то время многие образованные люди. Интерес к химии появился у него под впечатлением посещаемых им в Сорбонне лекций — их читал один из крупнейших химиков того времени Жан Батист Дюма. По окончании курса 26-летний Пастер преподавал физику в одном из лицеев Дижона, а в 27 лет стал внештатным профессором химии Страсбургского университета. К этому времени он уже сделал одно значительное открытие: доказал, что кристаллы винной кислоты бывают двух типов и имеют двоякую физическую природу, обусловленную различным расположением атомов в ее молекулах.
В 1854 году, когда Пастеру исполнилось 32 года, он получил должность штатного профессора и декана незадолго до того созданного естественноисторического факультета в Лилльском университете. Именно здесь Пастер-химик и положил начало развитию микробиологии как самостоятельной научной дисциплины. К тому времени о микробах было уже накоплено немало сведений, но еще недоставало научной оценки полученным фактам, и многие важные вопросы ожидали своего решения. Пастер с воодушевлением примкнул к лагерю «охотников за микробами».
За советом к уже известному ученому обратились французские виноделы в надежде, что он поможет им устранить нарушения в ходе процесса брожения, когда помимо спирта появляются различные нежелательные продукты. При микроскопическом исследовании бродильных жидкостей Пастер обнаружил живые микроорганизмы овальной формы, они быстро двигались в жидкой среде и энергично размножались делением. Своими наблюдениями он подтвердил выводы, сделанные его соотечественником де ля Туром: брожение — процесс биологический и вызывается микроорганизмами. Изучая этот процесс, Пастер установил, что при нарушении спиртового брожения в жидкости появляются микробы, отсутствующие при нормальном течении этого процесса. К такому же заключению он пришел, изучая процессы получения пива и уксуса.
На основании этих наблюдений Пастер сделал вывод о том, что каждый тип брожения вызывается определенными специализированными видами микробов. Он разработал методы, позволяющие препятствовать «плохому» брожению, при котором в вине или пиве появляются нежелательные кислоты.
Изучая возбудителей инфекционных болезней животных и человека, он установил, что каждое такое заболевание возникает в результате деятельности особого вида микробов, и предложил способы борьбы с ними.
Помимо необычайного упорства и гениального ума Пастер обладал еще одним выдающимся качеством — он воодушевленно и страстно боролся за то, чтобы полученные им выводы убедили и других ученых. Он читал публичные лекции, знакомил со своими опытами широкий круг заинтересованных лиц. Начав свою деятельность в качестве химика, он заложил затем научные основы микробиологии, произвел революцию в медицине, промышленности и сельском хозяйстве. Позднее, уже в Париже, он основал в 1888 году научно-исследовательский институт микробиологии, который в настоящее время носит его имя. В институте он работал и жил. Теперь в директорской квартире Пастеровского института на улице доктора Ру (его ученика и ближайшего сотрудника) создан Музей Пастера. Там все содержится в таком же виде, как и при жизни ученого. Как и тогда, вы найдете на его столе небольшой трехцветный французский флажок. Оставался он там и после проигранной Францией франко-прусской войны, что для ученого было небезопасно.
27 декабря 1892 года по случаю 70-летия Пастера в Сорбонне состоялось большое торжество. Поздравить юбиляра приехали прогрессивные ученые из всех стран мира. Видный английский врач Джозеф Листер, использовавший поистине революционное открытие Пастера в области хирургии, сказал на торжественном заседании: «Пастер сорвал у нас с глаз повязку, веками мешавшую нам видеть сущность инфекционных болезней». Юбиляр встал и обнял выступавшего под бурные аплодисменты всей аудитории. Он был слишком растроган и не смог произнести подготовленную речь. Зачитать ее пришлось его сыну. Ученый призывал молодежь к творческой работе на благо родины и всего человечества: «Какое бы место в жизни вы ни занимали, не поддавайтесь унынию, когда для вашего народа настанут трудные и печальные времена. Живите и работайте в спокойном мире лабораторий и библиотек. Всегда вы должны прежде всего спрашивать себя: что сделал я для своего образования? Что сделал я для своей Родины? Учитесь и работайте неустанно, и тогда вам улыбнется счастье и вам удастся сделать что-нибудь для прогресса и лучшего будущего человечества. Но даже если жизнь и не даст вам этого счастья и удачи, вся ваша работа должна быть такой, чтобы вы имели право сказать: «Я сделал все, что мог».
В полуподвальном помещении Пастеровского института находится небольшой склеп. В нем спустя три года был похоронен человек, о котором И. И. Мечников писал: «Как у каждого из нас, и у Пастера были свои ошибки. Но нет сомнения в том, что, помимо его огромных заслуг перед человечеством, это был выдающийся человек, человек большого сердца».
В маленьком немецком городке Клаусталь в семье горняка Коха 11 декабря 1843 года родился сын, названный Робертом. Жена родила рудокопу 13 детей. Двое умерли вскоре после рождения, об остальных десяти нам ничего не известно. Но имя Роберта Коха золотыми буквами вписано в историю микробиологии и медицины.
Успешно окончив гимназию, молодой Кох поступил на медицинский факультет Гёттингенского университета, где показал незаурядные способности. Тем не менее по окончании курса он долго не мог найти своего призвания, несколько раз менял место и характер работы. Разразившаяся в те годы эпидемия холеры в Гамбурге произвела большое впечатление на молодого медика и повлияла на всю его дальнейшую жизнь. С 1872 года он начал изучать заразные болезни. В своей квартире в городке Вольштейн (ныне Познань) он устроил небольшую лабораторию и там с помощью микроскопа, подаренного ему женой в день двадцативосьмилетия, провел свои первые микробиологические исследования. Кох с головой ушел в поиски возбудителей инфекционных болезней. В частности, он пытался выявить и возбудителя сибирской язвы, от которой на востоке Германии гибло тогда огромное количество скота.
Это было время ожесточенных споров и борьбы между приверженцами зачастую совершенно противоположных воззрений на причины возникновения заразных болезней. Одно из них уходило корнями в учение древнегреческого врача Гиппократа, считавшего причиной инфекционных болезней загрязненный воздух, который якобы содержит какие-то окисляющие вещества («болезнетворные миазмы»). Еще в 1863 году немецкий биолог Рудольф Вирхов писал: «Чем реже обновляется в закрытом помещении воздух, чем хуже вентиляция, тем скорее возникают миазмы тифа».
В 1876 году Кох опубликовал свое первое сообщение о микроорганизме — возбудителе сибирской язвы, назвав его Bacillus anthracis. Из крови животных, погибших от этой болезни, ему удалось выделить живые клетки возбудителя и размножить их в так называемой чистой культуре. К тому времени был уже широко известен предложенный Пастером метод культивирования бактерий на мясном бульоне. Однако он не позволял отделять друг от друга различные виды бактерий. Немецкий ботаник Фердинанд Кон использовал для этой цели кусочки вареного картофеля. Кох усовершенствовал этот метод выращивания бактерий. Материалом, полученным из крови павших животных, он натирал пластинки вареного картофеля. На них спустя некоторое время появлялись отдельные блестящие пятна колоний, которые представляли собой скопления мириад бактерий. Переносом отдельных колоний на различные пластинки картофеля Коху удалось отделить одни виды бактерий от других и получить их чистые культуры. Первой из этих культур была культура антракса — возбудителя сибирской язвы. Зараженные ею подопытные животные погибли, а из их селезенок ученый снова получил чистую культуру антракса и этим убедительно доказал, что возбудителем болезни является именно этот микроб.
Позднее Кох стал выращивать микробы на культуральных средах, к которым добавлял желатину. Когда Пастер увидел чистые культуры на этом твердом субстрате, он воскликнул: «Это действительно большой прогресс!»
Продолжая изучать бациллы антракса, Кох впервые сфотографировал их увеличенными при помощи микроскопа, став, таким образом, основателем микробиологической фотографии. Он иллюстрировал этими фотографиями свой доклад в Бреслау (ныне Вроцлав). В 1876 году профессор Кон дал им такую оценку: «Доктор Кох, известный своим эпохальным открытием возбудителя сибирской язвы, снова заслужил широкое признание изобретением метода фотографирования бактерий».
24 марта 1882 года стал «памятным днем в истории человечества», как сказал позднее один из учеников Коха. В этот день Кох сделал в Берлинском обществе физиологов сообщение о возбудителе туберкулеза. В своем вышедшем всего за несколько недель до этого учебнике патологии один из видных немецких профессоров писал: «Вопрос о возбудителе туберкулеза следует до сих пор считать нерешенным, поскольку нет прямого доказательства существования вызывающего его микроорганизма». Кох этот вопрос разрешил. Он открыл возбудителя туберкулеза, назвав его Mycobacterium tuberculosis, и выделил его в чистой культуре. После заражения этой культурой подопытных животных у них развился туберкулез, и Кох получил, таким образом, несомненное доказательство, что возбудителем этой болезни является открытый им микроорганизм, названный впоследствии «палочкой Коха».
В следующем году Кох принял участие в очень важной экспедиции в Египет, где немецкие и французские микробиологи работали над решением вопроса о природе холеры. Однако эта экспедиция не увенчалась успехом. Только через год Коху, предпринявшему экспедицию в Индию, удалось открыть и возбудителя холеры.
Научная деятельность Коха сопровождалась не только успехами и славой. Вскоре после опубликования работы об открытии возбудителя холеры он пишет статью «Дальнейшее сообщение о лечении туберкулеза». В ней говорилось о препарате, полученном из туберкулезных бактерий и названном им туберкулином. Кох писал, что на основе проведенных им опытов туберкулин можно с уверенностью считать лекарством от туберкулеза. Эта весть быстро распространилась по всему миру, вызвав новые надежды на исцеление. Многие больные устремились к Коху в Берлин, но их ждало горькое разочарование — туберкулин не излечивал от этой болезни. Позднее, впрочем, он получил иное применение и теперь употребляется в диагностике туберкулеза для установления, был ли у человека или животного контакт с туберкулезными бактериями.
С туберкулезом связана и другая ошибка Коха. Он утверждал, что человек не может заразиться туберкулезом от крупного рогатого скота. Однако подобное утверждение оказалось несостоятельным, так как стали известны случаи заражения человека от этих животных. Конечно, все эти ошибки нисколько не умаляют ценности научных достижений Роберта Коха. В 1905 году Кох был удостоен Нобелевской премии по медицине, что для ученого является наивысшим международным признанием. И если бы он дожил до наших дней, то увидел бы, что его открытия помогли найти надежные и действенные средства борьбы против туберкулеза.
Поинтересуйтесь этими помещениями, так выразительно названными лабораториями[2]; требуйте их повсеместного создания и улучшения!
Страж судебной палаты в Делфте был человеком чрезвычайно скрытным. Даже собственной жене он не позволял входить в «святая святых», где происходили его встречи с микроорганизмами. Но что сказал бы он, посетив современные лаборатории?
Его лупы увеличивали не более чем в 200 раз. Как бы обрадовался он, если бы ему представили правнука его «микроскопии» — современный световой микроскоп, увеличивающий клетку в 3000 раз. Мы сообщили бы ему также, что электронный микроскоп позволяет нам идти еще дальше — увеличивать объекты в сотни тысяч и миллионы раз и приподнимать завесы, скрывающие от нас тайны живой природы.
А Спалланцани увидел бы множество специальных сосудов — цилиндрических, граненых, шарообразных и плоских, больших и маленьких — для выращивания микроорганизмов. Некоторые сосуды названы по имени ученых, впервые применивших их в своей работе. Мы встретим здесь колбу Пастера, матрас Ру, сосуды Фрейденрайха и Ганзена, чашки Петри. Сосуды с культурами микробов находятся в специальных шкафах (термостатах), где можно обеспечить температуру, которая позволяет микробам наилучшим образом проявить свою жизненную активность. А вот и «тюрьма», где содержатся осужденные на смерть микроорганизмы…
Различные приборы, платиновые пластинки и иглы, стеклянные пипетки с ватными «пробками» на одном конце служат для переноса (пересева) микроорганизмов из сосуда в сосуд.
Черные, синие, зеленые, лиловые растворы в бутылочках — разнообразные красители, используемые для окраски микробов при изучении их под микроскопом.
Микробы, как правило, очень требовательны к пище, поэтому нужно иметь специальные «камеры» для хранения предназначенных для них пищевых запасов, из которых по рецептам «поваренной книги» приготовляются необходимые питательные среды.
Еще Спалланцани доказал, что при длительном кипячении жидкостей находящиеся в них микробы погибают. В первой половине прошлого века немецкий естествоиспытатель Шванн, продолжив эти наблюдения, установил, что высокая температура убивает и микробы, находящиеся в воздухе.
Пастер также весьма остроумным методом доказал присутствие микроорганизмов в воздухе и возможность их умерщвления кипячением жидкости. В специально приготовленный круглый стеклянный сосуд (с горлышком, вытянутым в длинную S-образную трубку) он налил питательный раствор и подверг его длительному кипячению. Затем у не остывшего еще сосуда запаял конец трубки.
При последующем охлаждении объем жидкости, естественно, уменьшился и в сосуде возникло пониженное давление. Жидкость оставалась чистой, живых микробов в ней не было. Но как только Пастер отламывал кончик запаянной трубки, в нее вследствие пониженного давления тотчас засасывалось небольшое количество воздуха, а с ним и микробы, которые, достигнув питательного раствора, начинали быстро размножаться.
Современник Пастера, английский физик Джон Тиндаль, показал, что микробы в жидкостях гибнут после нескольких повторных кипячений.
Все упомянутые методы уничтожения микробов воздействием высокой температуры мы объединяем под общим названием стерилизация. В лабораториях применяют несколько способов стерилизации.
Жидкости чаще всего стерилизуют при помощи водяного пара под давлением выше атмосферного. Аппарат, в котором проводится такая стерилизация, называется автоклавом. Первый автоклав был создан в Париже в 1885 году под руководством Пастера. Для стерилизации небольшого количества воды обычно достаточно ее нагревания в течение 20 мин при давлении пара в одну атмосферу. Увеличением давления еще на одну атмосферу можно достичь повышения точки кипения до 120 °C. Двадцатиминутного пребывания микробов в паре при такой температуре вполне достаточно, чтобы они погибли.
Повторное кратковременное нагревание жидкости до точки кипения, примененное Тиндалем, мы называем теперь тиндализацией. На предприятиях молочной промышленности для частичной стерилизации молока применяют пастеризацию — нагревание до 60 °C в течение 30 мин. В результате такой обработки уничтожается большинство вредных микробов, в том числе и возбудитель туберкулеза.
Различные стеклянные предметы и сосуды без жидкостей стерилизуются горячим воздухом в течение полутора часов при температуре 170 °C. Стерилизуемые предметы помещают в жестяные ящики или заворачивают в бумагу, которая предохраняет их от загрязнения микробами после стерилизации. Сосуды с питательными жидкостями при подготовке к стерилизации паром затыкают комочками ваты. Через вату микробы из воздуха не могут проникнуть в сосуд, и жидкость долгое время остается стерильной.
Для улавливания микробов из жидкостей и газов употребляют бактериальные фильтры; в настоящее время для этой цели чаще всего используют так называемые мембранные фильтры из нитроцеллюлозы. Все виды применяемых фильтров имеют настолько мелкие поры, что сквозь них бактерии не проникают. О том, что в мире микроорганизмов существуют формы, которые могут проскочить и через эти мелкие поры, долгое время не было известно. С этими организмами мы еще встретимся в дальнейших главах.
В 70-х годах прошлого столетия два известных «охотника за микробами» — Антон де Бари и Оскар Брефельд выделили из природных материалов целый ряд различных микроскопических грибов и, выращивая в чистых культурах, изучили их свойства.
Их коллега X. Шредер использовал при исследовании бактерий не только вареный картофель, как это делал Кон, но и белок вареного яйца, крахмал и другие питательные среды, на которых появлялись различно окрашенные колонии бактерий. Каждая из этих колоний вырастала из одной-единственной клетки, порождавшей в благоприятной среде многочисленное потомство.
Учитывая эти обстоятельства, Кох попытался получить и чистые культуры болезнетворных бактерий на стерилизованном картофеле. Однако картофель как питательная среда имел свои недостатки: многие виды бактерий на нем вообще не росли.
Поэтому нужно было найти такое вещество, которое способствовало бы превращению питательной жидкости в твердый субстрат. Кох начал добавлять в питательные растворы (еще не остывшие) желатину, превращающую жидкость в подобие фруктового желе. На поверхности такого желе, разлитого в небольшие стеклянные сосуды, ученый выращивал культуры бактерий, образующих мелкие колонии.
Желатина — вещество белковой природы и как таковое подвергается разложению микроорганизмами, в результате чего разжижается. Да и желе само по себе начинает превращаться в жидкость уже при температуре выше 28 °C.
Для нормальной жизнедеятельности болезнетворных микробов требуется не менее 37 °C, поэтому выращивать их нужно лишь при такой температуре. В. Гессе, ассистент Коха, как-то пожаловался своей жене на неудачные опыты с желатиной. Она вспомнила в связи с этим, что во время своего пребывания на Дальнем Востоке видела, как для приготовления многих блюд использовали в качестве желатиноподобного вещества агар, получаемый из некоторых видов морских водорослей.
А что, если попробовать агар в качестве питательной среды для микробов? И агар оправдал их надежды. Работать с ним в микробиологической лаборатории оказалось очень удобно. Он разжижается при температуре выше 100 °C, и его нужно добавить к жидкости всего лишь в количестве полутора-двух процентов, чтобы при охлаждении до 40–50 °C она начала сгущаться и затвердевать.
Другой сотрудник Коха, Роберт Петри, стал выращивать микробы на твердых культуральных средах в специальных плоских стеклянных чашках с крышками, известных теперь всем микробиологам как «чашки Петри». Без этих атрибутов выращивания чистых культур нельзя сейчас представить себе работу микробиологов, и все это — заслуга Коха и его школы (фото 1).
Различные микробы предъявляют далеко не одинаковые требования к пище. Одни из них удовлетворяются более чем скромным питанием, другие чрезвычайно требовательны.
Мы знаем, что люди, страдающие сахарным диабетом, не переносят пищу, содержащую много сахаров, и в их питании количество сахара стараются снизить до минимально возможного предела. В 90-х годах прошлого столетия знаменитый русский микробиолог С. Н. Виноградский и в царстве микробов открыл настоящих «диабетиков» — группу микроорганизмов, не переносящих присутствия сахаров в питательной среде, а иногда и вовсе не нуждающихся в каких-либо готовых органических соединениях. Виноградский вначале порядком намучился с бактериями, которые не желали расти на питательных средах с агаром, содержащим углерод, связанный в органических соединениях. Для приготовления твердых питательных сред он несколько позже стал применять неорганическое вещество силикагель.
Для других микробов совсем не обязательно присутствие азотных соединений в среде, поскольку они поглощают азот непосредственно из атмосферы, в которой этот элемент всегда в избытке (в воздухе содержится около 80 % азота). Однако таких нетребовательных микробов в природе немного. Большинство же из них — виды, разборчивые в еде и необычайно капризные, есть и такие «лакомки», которые не могут обойтись без витаминов и даже без крови животных.
В своем питании человек использует вареные, жареные и реже сырые продукты. Микроорганизмы в естественных условиях потребляют обычно сырые продукты, в которых находят подходящие для себя вещества. Микробиологи, готовя пищу для микробов, обязательно подвергают ее стерилизации. Этой процедурой они уничтожают все микроорганизмы, находящиеся в питательных средах и сосудах, с тем чтобы микробы, которыми заражают среду, попали на абсолютно стерильный субстрат. Такие же стерильные питательные среды применяются и при выделении микроорганизмов из природных объектов.
Славных микробиологов прошлого часто называли охотниками за микробами. И не без основания. Ведь им приходилось по-настоящему охотиться, чтобы найти и выделить микробы из природной среды, в которой те обычно живут. Собираясь на охоту за куропатками, охотник берет с собой ружье, рыбак ловит рыбу удочкой с наживкой на крючке. И у микробиолога есть свое охотничье снаряжение, а в качестве приманки он использует подходящую питательную среду.
Как-то в летние каникулы Пастер собрался на такую охоту с большим запасом сосудов, уже заполненных питательной жидкостью. Для того чтобы определить состав микробов в том или ином месте, он всегда использовал 20 сосудов. У каждого из них он отламывал кончик запаянной трубочки, через которую в сосуд тотчас проникал воздух. И если жидкость через некоторое время мутнела, значит, в ней появились микробы и охота прошла успешно. Во дворе Парижской обсерватории микробы были обнаружены во всех 20 сосудах; на улице селения, расположенного в предгорьях Юры, микробы были найдены лишь в восьми; в горах на высоте 850 м над уровнем моря — только в пяти; на леднике Мер-де-Глас, лежащем на высоте 2000 м под вершиной Монблана, микроорганизмы были обнаружены только в одном из 20 сосудов. Установленный Пастером факт постепенного уменьшения количества микробов с высотой впоследствии неоднократно подтверждался.
Находящиеся в воздухе микробы можно обнаружить и другим способом. Приготовим несколько стерильных чашек Петри с тонким слоем питательной среды из агара. В нужном нам месте приоткроем на несколько минут крышки у этих чашек, затем снова их закроем и поместим в термостат, где поддерживается температура около 30 °C. Уже на второй или третий день мы обнаружим в чашках мелкие, различно окрашенные колонии. В каждой из таких колоний величиной до 3 мм в диаметре будет находиться по нескольку миллиардов бактериальных клеток. Все они — потомство той единственной клетки, которая проникла в сосуд из воздуха (фиг. I, вверху слева).
Опытный микробиолог умеет выделять микробы из самых разнообразных природных источников: из пахотной земли, воды, молока, мяса и даже с поверхности собственной кожи или из слюны, в которой их впервые увидел и описал Левенгук. Чаще всего выделенные микробы выращиваются на агаре в чашках Петри.
Колонии, полученные в чашках Петри, недолго сохраняют свою самостоятельность. Постепенно разрастаясь, они могут соприкасаться, наползать одна на другую. Чтобы сохранить чистоту колоний, надо, не дожидаясь этого момента, пересеять микробы на так называемый косой агар. Это стерилизованная питательная среда с агаром в пробирках, закрытых ватными пробками. Пробирки остаются в наклонном положении, пока субстрат не затвердеет. Микробы переносятся из каждой маленькой колонии в одну из пробирок с косым агаром. Пробирка нумеруется, ставится в штатив и помещается в термостат. Через несколько дней на косом агаре вырастает новая колония в виде полоски в том месте, где игла касалась агара при пересеве.
Представьте себе обширный участок на левом берегу Дуная с грядками цветов, пальмами в оранжереях, с цветущей королевской викторией на глади небольшого озера. Это Братиславский ботанический сад. «Ботанический сад» микробиологов выглядит иначе: холодные помещения, уставленные множеством полок с бесконечными рядами штативов, заполненных пробирками с находящимися в них колониями микроорганизмов. Такие коллекции мы найдем в каждом микробиологическом институте, в лабораториях больниц, на заводах, производящих антибиотики. В микробиологических коллекциях больниц так содержатся культуры болезнетворных микробов, на промышленных предприятиях и в научно-исследовательских институтах — культуры микроорганизмов, используемых в народном хозяйстве (фиг. I).
Самые большие коллекции микроскопических грибов находятся в Баарне (Нидерланды), где было создано Центральное бюро чистых культур. Там собраны многие тысячи видов почти со всего земного шара.
В коллекции микроорганизмов помещаются только чистые культуры, а получить их не так-то легко. Еще со времен Коха были известны более или менее сложные методы их получения. Самым надежным, но и самым сложным аппаратом для этой цели служит микроманипулятор. Механизм этого аппарата настолько тонок, что позволяет передвигать его детали на тысячные доли миллиметра. Он соединен с микроскопом, в который можно наблюдать живые клетки микробов. Мы выбираем в видимом поле место, где находится один-единственный микроб. Поймав при помощи микроманипулятора эту клетку, переносим ее на приготовленную питательную среду. Из изолированной таким образом клетки и вырастает чистая культура.
Питательные вещества в пробирках, где содержатся культуры микробов, не неисчерпаемы. Они постепенно используются микробами, а в среде накапливаются продукты их жизнедеятельности. Оба эти процесса неблагоприятно влияют на состояние культуры, и поэтому через определенное время ее нужно пересевать на свежие питательные среды. Для больших микробиологических коллекций это очень трудоемкая работа, и чтобы избежать ее, мы «консервируем» микробы, стараясь тем или иным способом задержать или совсем приостановить на некоторое время их жизненные процессы. Наиболее простой метод консервации состоит в помещении культуры микробов в холодильник при температуре около 0 °C. Так хранятся культуры грибов. Более совершенный, но и более трудоемкий способ — лиофилизация культур[3] — применяется при хранении бактерий.
Наш предварительный осмотр микробиологической лаборатории подходит к концу. В дальнейшем, при более тщательном знакомстве с работой микробиологов, мы убедимся, что она необыкновенно интересна, но требует большого напряжения и внимания, а порой бывает и небезопасна. Многим исследователям стоила она здоровья и даже жизни.
Если бы мы смогли рассмотреть человека под микроскопом, он показался бы нам огромным, как Монблан или Чимборасо. Но мелкие бактерии при таком колоссальном увеличении выглядят не больше точки или запятой.
В 1665 году Роберт Гук издал свой эпохальный труд «Микрография, или некоторые физиологические описания мелких телец, сделанные при помощи увеличительных стекол…» В нем, как мы уже знаем, он описал микроскопическую структуру пробковой ткани, назвав ее ячейки, расположенные правильными рядами, клетками. Дальнейшие исследования установили поразительное сходство формы клеток у растений и животных. Оказалось, что это не пустые ячейки, а основные структурные единицы всякой живой материи. Новейшие данные биологической науки подтверждают этот важный постулат прошлого века. Старая формулировка Гарвея «Все живое — из яйца» понемногу «модернизировалась» в другую: «Каждая клетка происходит от клетки» (Omnis cellula e cellula).
Но вернемся к микроорганизмам и посмотрим, есть ли у них клетки. За исключением некоторых вирусов и бактериофагов (подробнее мы познакомимся с ними в третьей части нашей книги), все микробы представляют собой одноклеточные организмы. Уже со времен Спалланцани мы знаем, что каждая микробная клетка происходит от себе подобной. Значит, и здесь можно говорить о родителях и их потомстве (в отношении бактерий принято использовать термины «материнские» и «дочерние» клетки).
Растения, животные и микроорганизмы имеют одну очень важную общую черту строения — клеточную организацию. Клетка — это наименьшая форма организованной живой материи, способная в подходящих для нее среде и условиях существовать самостоятельно.
Наш организм состоит из многих миллиардов клеток, объединенных в более крупные элементы — ткани. Последние составляют еще более высокие по уровню (имеется в виду строение и функция) единицы — органы, связанные в свою очередь многими сложными взаимоотношениями в одно целое — организм. В настоящее время биологам уже хорошо известно, как «приучать к самостоятельности» и некоторые клетки человеческого, животного или растительного организма (фото 2).
В мире микробов мы найдем множество фактов, говорящих о способности отдельных клеток выполнять основные жизненные функции: движение, обмен веществ, размножение, реакции на раздражение и пр. Если животные и растения в громадном большинстве являются многоклеточными организмами, мир микробов представлен, как правило, одноклеточными существами. Бактерии, дрожжи, некоторые микроскопические грибы, простейшие и многие водоросли — все это одноклеточные представители мира микроорганизмов (фото 3).
Астрономы измеряют огромные пространства Вселенной такой мерой длины, как световой год, подразумевая под этим расстояние, проходимое лучом света за один год. Он равен приблизительно девяти с половиной биллионам километров.
Моряки в своих плаваниях измеряют расстояния в морских милях; мы, путешествуя, используем в качестве меры длины километр, а в повседневной жизни обходимся метрами, дециметрами, сантиметрами и миллиметрами.
Но для микроорганизмов все эти меры слишком велики. Ведь бактериальная клетка средних размеров достигает в длину лишь тысячной доли миллиметра! Поэтому микробиологи применяют еще более мелкие единицы измерения: микрометр (мкм), или тысячная доля миллиметра, нанометр (нм), или миллионная доля миллиметра. При работе с электронным микроскопом используется еще более мелкая единица — ангстрем (Å), или десятимиллионная часть миллиметра. Таким образом,
1 мм = 1000 мкм = 1 000 000 нм = 10 000 000 Å.
Громадное большинство клеток бактерий имеет в среднем величину 0,5—1 мкм, клетки дрожжевых грибов или красных кровяных телец человека достигают 5—10 мкм. Поэтому-то их нельзя увидеть невооруженным глазом и долгое время они оставались скрытыми для человека, пока на помощь ему не пришел микроскоп.
Как же измерить длину такой клетки? Самый первый способ придумал еще Левенгук в 1684 году. Он подобрал несколько одинаковых песчинок, положил их одну за другой на отрезке прямой, равном ширине большого пальца, и пересчитал. А потом сравнил величину красных кровяных телец с этими песчинками. Таков был этот простой метод. С тех пор измерение при помощи микроскопа прошло путь длительного усовершенствования. Сейчас величину клеток мы измеряем под микроскопом специальными приборами; кроме того, существуют полуавтоматические и автоматические устройства для измерения не только величины, но и объема клетки!
Самые мелкие бактерии имеют в диаметре около десятой доли микрометра, но есть и такие, волокнообразные клетки которых достигают в длину нескольких сантиметров, а в ширину всего 40 мкм. Если величина клеток дрожжей, как мы уже знаем, 5—10 мкм, то волокнистые клетки других грибов достигают в длину нескольких миллиметров. Большая часть одноклеточных водорослей имеет также микроскопические размеры, хотя известны случаи, когда их длина составляет не меньше нескольких сантиметров. Вообще же можно считать, что клетки микроорганизмов — это живые существа бесконечно малых размеров. Чтобы лучше понять, сколь ничтожны эти размеры, можно представить их себе увеличенными во много раз и сравнить с видимыми предметами, увеличенными во столько же раз. Если, например, клетку бактерии величиной в полмикрометра микроскоп увеличит до размеров макового зернышка, то само зернышко, увеличенное во столько же раз, представляло бы собою «шарик» до двух метров в диаметре, а человек среднего роста при таком увеличении превратился бы в гиганта, которому Герлаховски-Штит[4] не доходил бы до плеча.
Различные объекты в световом и электронном микроскопах.
Вполне понятно, что такие маленькие существа, как бактерии, должны быть и необычайно легкими. На один миллиграмм веса приходится 5 миллиардов бактерий. При этом такое астрономическое количество клеток занимает крохотное пространство. Если в одном кубическом сантиметре питательной среды насчитывается миллиард бактерий размером 1x5 нанометров, то указанное выше количество займет всего одну двухсотую долю этого объема!
Известный современный английский физик Джон Бернал назвал XVIII век веком путешествий, коллекционирования и классификации.
Шведский ученый Карл Линней, много путешествовавший по свету и собравший гигантские коллекции, создал систему классификации минералов и животных. Но наибольшего успеха он достиг в классификации растений. Лишь «зверушкам» Левенгука он не уделил большого внимания, хотя и выделил для них в своей системе особую клеточку, объединив их всех под названием «хаос инфузорий» и отметив, что эти мельчайшие живые существа не нуждаются в дальнейшей классификации, поскольку не имеют особого значения.
Хаос в отношении места микробов в живой природе царил еще и во времена Пастера, хотя тогда уже многое было известно об их деятельности. Но в гниющем мясе, бродивших жидкостях и других объектах, в которых ученым приходилось наблюдать этот таинственный мир мельчайших существ, находилось такое фантастическое разнообразие «зверушек», что возникло даже особое понятие «плеоморфизм», означавшее безграничную изменчивость микробов.
В противовес «плеоморфистам» вокруг Коха сгруппировались ученые, твердо отстаивавшие иную точку зрения и способствовавшие своими открытиями интенсивному развитию микробиологии.
На основании работ с чистыми культурами Кох пришел к заключению, что микробы неизменны, что шарообразные бактерии всегда дадут потомство такой же шаровидной формы и принимать иной облик и превращаться в иные виды микробов они не способны. Это направление в микробиологии получило название «мономорфизма». Если немецкий плеоморфист Ханс Галлир утверждал, что более мелкие микробы, бактерии и дрожжи являются лишь низшей ступенью развития более сложных грибов и могут превращаться в них под влиянием факторов внешней среды, то мономорфисты с не меньшим упорством доказывали, что внешняя форма микробов неизменна и каждый вид имеет особое место и назначение в природе.
Дальнейшее развитие микробиологии показало справедливость взглядов мономорфистов, но кое-что из положений плеоморфистов об изменчивости микробов мы принимаем и в настоящее время. Однако победа мономорфистов была в то время важной, поскольку дала толчок к попыткам создать из «микробиотического хаоса» систему, связанную с системой всех живых организмов.
Всю живую природу натуралисты разделили на два крупных царства — растительное и животное. В каждом царстве различают несколько типов, подразделяющихся на отряды; в отрядах — несколько классов, в каждом классе содержатся порядки; последние делятся на семейства, состоящие из родов, а роды в свою очередь — на виды. Каждый вид имеет свое название, которое состоит из двух слов. Такую «бинарную номенклатуру» ввел еще Линней. Первое слово, пишущееся с заглавной буквы, представляет название рода данного организма, а второе является его видовым эпитетом (в границах рода), подобно тому как у людей фамилия означает принадлежность к той или иной семье, а имя отличает их друг от друга в кругу семьи. Бацилла туберкулеза, например, носит научное название Mycobacterium tuberculosis, дрожжи — Saccharomyces cerevisiae, бацилла столбняка — Clostridium tetani; дрозд называется Turdus musicus, сахарная свекла — Beta vulgaris.
Одни микробы напоминают своими свойствами и особенно характером питания зеленые растения, другие — животных. Таким образом, мир микроорганизмов объединяет очень разнообразных представителей. Мы относим к ним вирусы, риккетсии, бактерии, микроскопические грибы, сине-зеленые и другие микроскопические водоросли и простейшие. Часто приходится встречаться с тенденцией объединять все микроорганизмы в одно особое царство под названием Protista в отличие от царств растений (Plantae) и животных (Animalia).
Бактерии — типичные представители мира микроорганизмов. Посмотрим, что может нам рассказать о них микроскоп. С его помощью мы обнаруживаем среди бактерий шаровидные, цилиндрические, нитевидные и различным образом закрученные клетки.
Самые простые бактерии имеют вид правильных шариков и называются кокками. Если они соединены друг с другом по два, то их называют диплококками, по четыре — тетракокками; когда же они группируются по восемь и напоминают перевязанный веревкой крест-накрест пакетик, то носят название сарцин. В некоторых случаях кокки группируются в комочки, напоминающие гроздья винограда или длинные цепочки, и мы называем их соответственно стафилококками либо стрептококками. К коккам относятся возбудители различных инфекционных болезней (фото 4 и 5).
Очень многие бактерии имеют форму палочек, например живущая в нашем организме кишечная палочка (Escherichia coli). Такую же форму имеют и другие кишечные бактерии, скажем, возбудитель тифа (Salmonella typhi) или дизентерии (Shigella dysenteriae).
Электронный микроскоп позволил нам увидеть и органы движения некоторых бактерий — тоненькие жгутики (один или целая группа), с помощью которых бактерии активно передвигаются в жидкой среде. Жгутики можно увидеть и в световом микроскопе, если применять специальный метод окрашивания. Предварительно их обрабатывают (протравливают) особым препаратом, частицы которого оседают на жгутике и делают его более толстым, а следовательно, и хорошо видимым после окраски в световом микроскопе. Кто-то сравнил протравливание и окраску бактериальных жгутиков с процедурой вымачивания объекта в меде и последующим обваливанием его в пухе (фото 7).
Некоторые из бактерий-палочек в особых условиях образуют в своих клетках шаровидные или овальные тельца, называемые спорами. Эти спороносные бактерии выделяются в группу бацилл. Их споры способны переносить такие неблагоприятные жизненные условия, как длительное высушивание или высокие температуры. При нормальной температуре споры сохраняют жизнеспособность на протяжении нескольких лет; есть данные, что споры бациллы столбняка могут существовать в почве больше 30 лет.
Некоторые бактериальные клетки имеют изогнутую форму и напоминают рожок (или запятую); мы называем их вибрионами. Такую форму имеет возбудитель холеры Vibrio cholerae. Другие бактерии отличаются нитевидными, спирально закрученными клетками, это — спириллы.
К бактериям относят и своеобразную группу спирохет, которые напоминают своей формой простейших. К этой группе принадлежат возбудители некоторых инфекционных болезней, например сифилиса или желтой лихорадки. Железобактерии имеют длинные, нитевидные клетки, серобактерии отличаются большой величиной и бывают заметны и без увеличительных приборов.
У актиномицетов, живущих в почве, клетки нитевидные и разветвленные. Многие из них известны своей способностью выделять в окружающее их пространство антибиотические вещества (например, стрептомицин), используемые человеком в борьбе с болезнетворными микробами.
Схожи с бактериями очень опасные микробы, называемые риккетсиями. Эти мелкие, овальной формы микроорганизмы достигают в длину 300 нм. В отличие от бактерий они размножаются не на жидких питательных средах, а только в организме животных или в культурах ткани. Это опасные спутники людей и животных. Они вызывают серьезные инфекционные заболевания, такие, например, как сыпной тиф, уносивший в прошлом десятки тысяч жизней. Американский микробиолог Говард Тэйлор Риккетс и чешский паразитолог Станислав Провацек, которым мы обязаны открытием и изучением этих микробов, сами пали их жертвой в результате заражения. В их честь возбудитель сыпного тифа был назван риккетсией Провацека (Rickettsia prowazeki).
Боровики, рыжики, мухоморы, шампиньоны и другие хорошо знакомые нам грибы имеют родственников, изучением которых также занимаются микробиологи. По форме, распространению в природе и роли в жизни человека это очень пестрая «родня».
Наиболее простые по строению представители этой группы микроорганизмов — одноклеточные дрожжи. Мы уже вспоминали о них как о давнишних помощниках человека, без которых он не имел бы ни хлеба, ни вина, ни пива, ни других спиртных напитков. Они обитают на растениях, в частности на плодах, вызывают брожение их сока при домашнем приготовлении вина. Мы знаем и о «культурных» дрожжах, специально выращиваемых в дрожжевой промышленности (фиг. II). Хорошо нам известные пекарские дрожжи — не что иное, как спрессованные живые клетки дрожжевых грибов (фото 10).
Возьмем кусочек пекарских дрожжей и разведем его в небольшом количестве воды. Одну каплю этой суспензии поместим на предметное стекло, покроем ее другим стеклышком и рассмотрим под микроскопом. Мы увидим, что в воде плавают овальные тельца. Это и есть клетки дрожжевых грибов. Еще Пастер доказал, что именно они вызывают спиртовое брожение. Позднее мы узнаем, какова их роль при получении спирта и почему мы используем их для приготовления дрожжевого теста. Тут микроскоп нам не поможет. Но измерить с его помощью величину клеток мы можем. Она равна приблизительно 5 мкм. На отрезке длиной в сантиметр поместилось бы в один ряд до 2000 клеток. В кубике с сантиметровой гранью их будет находиться 2000 х 2000 х 2000. Читатель, благосклонно относящийся к математике, может высчитать, сколько таких клеток содержится в 500 г пекарских дрожжей.
Примером другого типа микроскопических грибов может служить «плесень» из рокфора, придающая этому сыру характерную зеленоватую окраску, запах и вкус. Поглядим, что представляет под микроскопом пятнышко зеленого вещества из этого сыра. Мы увидим сплетение нитевидных волокон с перегородками, расположенными перпендикулярно волокну и всегда на равном расстоянии друг от друга. Эти перегородки разделяют отдельные клетки, из которых состоит волокно, известное у специалистов под названием гифы. Гифы взаимно переплетаются и образуют местами подобие кисточек. На концах этой кисти часто можно увидеть небольшую цепочку шарообразных телец, постепенно отделяющихся от веточек. Эти тельца обеспечивают размножение гриба и являются конидиями. Грибы с упомянутыми формами метелочек и кисточек относятся микробиологами к роду Penicillium (penicillus — по-латыни кисточка). Полное видовое название нашего «пенициллиума» из рокфора — Penicillium roqueforti (фото 11).
К микроскопическим грибам относят также незваных гостей наших кладовых. Незаметно, часто непонятным для нас путем, они проникают в банки с овощной икрой и вареньем или поражают разложенные на полке лимоны, обволакивая их зеленоватым налетом.
Интересно рассмотреть под микроскопом плесень на лимоне. Наш глаз увидит множество переплетенных гиф, однако мы напрасно будем искать метелочки или кисточки, как в предыдущем случае. Здесь мы найдем образования другого типа, на которых также рядами расположены мельчайшие вздутия. Иногда волокно на конце расширяется и из этого образования выходят веточки, на конце которых видны цепочки из круглых телец — конидий. Все вместе это несколько напоминает цветы подсолнечника. Микробиологи относят этот вид гриба к роду Aspergillus. Род Aspergillus и род Penicillium родственны и принадлежат к одному семейству Aspergillaceae. Если одна из конидий попадет в подходящую среду, например в открытую банку с вареньем, она прорастет. Из одной клетки-споры возникнет вскоре целое переплетение гиф, а на них — типичные кисточки или шарики, несущие следующее поколение спор (фото 12).
Кроме описанных типов, нам известно и множество других грибов, которые также было бы небезынтересно понаблюдать под микроскопом и рассмотреть особенности их строения. Но мы пока что расстанемся с этой группой микробов, чтобы встретиться с ее представителями уже при других обстоятельствах.
В мире микроорганизмов мы можем наблюдать ряд признаков, характерных и для высших организмов. Мы уже знаем, что некоторые грибы по размерам относятся к микроорганизмам, а другие видны невооруженным глазом (например, шляпочные лесные грибы). Тем не менее все грибы составляют особую и единую биологическую группу. То же относится и к водорослям (фиг. III). Некоторые из них являются одноклеточными организмами, видимыми только под микроскопом, другие же образуют очень крупные формы. Но связывает их всех воедино одинаковый по своей сущности процесс питания, напоминающий питание зеленых растений.
Особую группу микроорганизмов составляют сине-зеленые водоросли. Одни — и довольно существенные — признаки сближают их с бактериями; другими признаками, в частности способом питания, они напоминают зеленые водоросли (фото 13).
Некоторые из этих зеленых водорослей — типичные представители одноклеточных микроорганизмов. Они населяют проточные и стоячие воды, а многие из них будут, по-видимому, иметь для человека большое значение в качестве источника дополнительной пищи и кормов. Кроме одноклеточных зеленых водорослей, нам известны также виды, живущие колониями, у которых «индивидуальные» интересы отдельных клеток подчиняются интересам целой колонии. Характерные представители таких колониальных водорослей входят в род вольвокс (Volvox). Несколько ранее мы уже знакомились с их описанием, данным Левенгуком в 1700 году в его письме в Лондонское королевское общество.
Не менее интересны диатомовые водоросли, имеющие прочные панцири из кремнезема самых разнообразных геометрических форм. Створки их панцирей сохраняются и после отмирания живых тканей. В течение многих тысячелетий в различных местах нашей планеты откладывались мощные слои этих мельчайших панцирей как вечные памятники давно минувших эпох (фото 14 и 15).
Если водоросли своим образом жизни напоминают представителей растительного мира, то простейшие стоят ближе к животным. Их клетки чрезвычайно разнообразны по форме и величине. Некоторые из них ведут самостоятельный образ жизни, другие бывают опасными паразитами и возбудителями инфекционных болезней (фото 16).
Сколько чудес таят в себе эти крохотные создания!
Исследованиями субмикрокосмоса занимаются цитология (наука о клетке), цитохимия, биохимия, биофизика, молекулярная биология, генетика, микроскопия и другие научные дисциплины. Они изыскивают различные методы, стараясь «заглянуть» внутрь клетки, изучить ее строение и связанные с ним жизненные процессы.
Цитологи уже располагают тонкими методами, помогающими им видеть «невидимое». Впервые позволил «заглянуть» в клетку правнук микроскопии Левенгука — световой микроскоп, а вслед за ним и его более молодые родственники — фазово-контрастный, стереоскопический, ультрафиолетовый, люминесцентный и поляризационный микроскопы. Позднее к ним присоединился и праправнук микроскопии — электронный микроскоп.
С их помощью наблюдают обработанные различным способом живые и мертвые клетки. Уже в конце XIX века микробиологи научились приготовлять препараты из живых микробов и наблюдать их внешнюю структуру, а в некоторых случаях и движение. Позже при изготовлении препаратов они стали умерщвлять микробы, а их клетки окрашивать специальными красителями. Потом научились наблюдать за живыми клетками в темном поле, а в 30-х годах получили великолепный прибор — фазово-контрастный микроскоп, который позволил проникнуть во многие тайны внутренней структуры живой клетки.
Через двести лет после первых наблюдений Левенгука известный немецкий физик-оптик XIX века Эрнст Аббе установил, что разрешающая способность оптических микроскопов ограничена длиной световых волн. Наименьшие объекты, видимые в оптическом микроскопе (с применением ультрафиолетовых лучей и так называемых иммерсионных объективов), должны иметь размеры не менее сотой части нанометра, или нескольких десятитысячных долей миллиметра. Это значит, что самые мелкие бактерии находятся где-то около предела видимости наиболее совершенного оптического микроскопа. Казалось, что эти пределы так и не удастся превзойти.
Но шли годы, и появился фазово-контрастный микроскоп. Его изобрел в 1935 году голландский физик Цернике, получивший за свое открытие спустя двадцать лет Нобелевскую премию. Фазово-контрастный микроскоп, будучи также оптическим микроскопом, не преодолел нижней границы наблюдаемых размеров, но зато получил большое преимущество перед своим предшественником — с его помощью можно было наблюдать живые клетки микроорганизмов, что далеко не всегда удается в обычных оптических микроскопах. Чтобы хорошо рассмотреть препарат в световом микроскопе, бактерии умерщвляют, а затем окрашивают; при этом всегда существует опасность изменения структуры клеток.
Значительно важнее наблюдать их в живом, естественном состоянии. Для непосвященного читателя достаточно будет сказать, что фазово-контрастный микроскоп обладает специальным приспособлением, которое может изменять длину пути световых волн, исходящих от наблюдаемого объекта, благодаря чему возникает «фазовый сдвиг на одну четвертую длины волны». В результате усиливается рельеф, что позволяет увидеть некоторые малые элементы структуры клеток.
Родствен фазово-контрастному микроскопу и интерференционный микроскоп. Такой тип микроскопа, сконструированный физиком Номарским, позволяет детально рассматривать поверхность микробных клеток.
Приблизительно в это же время появился и электронный микроскоп, без которого теперь нельзя даже представить работу цитологов и микробиологов. Первый электронный микроскоп сконструировали и представили научной общественности сотрудники Высшей технической школы в Берлине Макс Кнолль и Эрнст Руска. Роль световых лучей, благодаря которым в других микроскопах получается увеличенное изображение наблюдаемых объектов, в электронном микроскопе играют пучки электронов. Их движением управляют электромагниты, выполняющие функцию оптических линз. Современный электронный микроскоп дает нам возможность получать увеличение объекта в несколько сот тысяч раз.
Но при таком наблюдении клетки бактерий иногда оказываются чрезмерно большими и лучи электронов не могут проходить сквозь них. Поэтому для исследования внутреннего строения клеток в помощь электронному микроскопу призывается особый микрохирургический аппарат — ультрамикротом. Он позволяет получать сверхтонкие срезы клеток и таким образом подготавливать их к наблюдению в электронном микроскопе.
Вообще, надо сказать, работники электронной микроскопии в этом деле настоящие мастера. Клерки, предназначенные для наблюдения, они сначала заливают особым веществом аралдитом, которое быстро затвердевает, а потом разрезают их ультрамикротомом. Таким способом можно разрезать белое кровяное тельце (диаметром около 15 мкм) на 750 тончайших срезов, каждый из которых не толще 0,02 мкм!
Однако у электронного микроскопа есть и один крупный недостаток — в нем можно наблюдать лишь мертвые клетки. Это связано с тем, что молекулы воздуха представляют для электронов непреодолимое препятствие, поэтому все наблюдения должны проводиться в безвоздушном пространстве (вакууме), а это приводит к немедленному обезвоживанию и гибели всех живых клеток.
Профессора Дюпуи, Перрье и Дюрриё из Института электронной микроскопии в Тулузе (Франция) решили устранить и это препятствие. Поток электронов в обычном электронном микроскопе разгоняется при помощи напряжения порядка 100 000 В. Дюпуи и его коллеги используют напряжение 1 500 000 В, в результате чего скорость электронов достигает 291 000 км в 1 с, то есть почти приближается к скорости света. Для решения этой задачи ученым пришлось преодолеть целый ряд технических трудностей. Необходимо было обеспечить защиту обслуживающего персонала от вредного воздействия рентгеновских лучей, возникающих при попадании электронов на металлические части аппарата, надо было создать электромагнитные линзы, весящие до 700 кг, из которых 100 кг приходится на 29 000 витков медной спирали. Но поскольку при таком высоком напряжении большую опасность представляет еще и влажность, все сооружение необходимо было поместить в металлическую сферу диаметром 24 м. Ускоренные в своем движении электроны проникают не только сквозь тончайший слой воздуха, но и через живые клетки бактерий. Хотя продолжительное действие электронов и наносит им повреждения, а позднее и убивает, тем не менее при наблюдении под микроскопом клетки какое-то время остаются живыми и неизмененными (фото 18).
Описанные методы, как, впрочем, и многие другие, позволяют нам проводить исследования в «субмикромире» клетки и открывать его тайны.
В предыдущей главе мы познакомились с тремя главнейшими типами бактериальных клеток. Одни из них имеют форму шариков, другие — палочек или цилиндриков, а третьи представляют подобие спирали.
Какова же внешняя и внутренняя структура бактериальной клетки? Ее схематическое изображение представлено на рисунке. Как и все клетки, она содержит протоплазму, состоящую из цитоплазмы и ядра (у бактерий чаще говорят об области ядра). Цитоплазму охватывает цитоплазматическая мембрана, к внешней стороне которой примыкает клеточная стенка, определяющая форму клетки (фото 19). При воздействии пенициллина на бактериальные клетки обычно нарушается именно структура их стенок и протопласты или сферопласты оказываются оголенными[5]. У них остается лишь тонкая цитоплазматическая мембрана. С потерей стенки исчезает и первичная форма бактериальной клетки, так как оголенный протопласт принимает форму шара. Большинство палочковидных и спиралевидных бактерий снабжены органами передвижения, которые называются жгутиками. Одна клетка может иметь от одного до тридцати жгутиков. Их число и расположение строго характерны для определенных видов бактерий. Зарождаясь в цитоплазме, они выходят через стенку клетки наружу в виде тонких волосков, диаметр которых не превышает 12 нм. Из клеток ряда бактерий удалось выделить некоторое количество жгутиков, достаточное для их химического анализа. В результате было установлено, что бактериальные жгутики состоят из белков, подобных тем, которые находятся в мышцах.
Клеточная стенка многих бактерий часто покрыта слоем слизи, носящим название капсулы. При наблюдении ультратонких срезов бактериальных клеток в электронном микроскопе было установлено, что ширина клеточной стенки равна 10–20 нм. Специальными методами удалось изолировать отдельные стенки, изучить их строение и подвергнуть химическому анализу, который показал, что в них содержится большое количество белков и жиров.
Уже давно было известно, что в бактериях встречаются соединения, характерные для клеточных ядер (речь о них пойдет в главе 12), но «морфологически дифференцированного ядра», как говорят цитологи, выявить до сих пор не удавалось. Лишь благодаря изучению ультратонких срезов, а также с помощью некоторых других методов удалось доказать присутствие в цитоплазме телец, которые не только своим химическим составом, но и иными особенностями напоминают клеточные ядра. С другой стороны, некоторые свойства отличают их от ядер, известных нам по клеткам ряда микроорганизмов, животных и растений.
Схема строения бактериальной клетки.
В цитоплазме бактерий иногда встречаются и другие образования.
Серобактерии, например, вызывают некоторые изменения в сернистых соединениях и откладывают в своих клетках серу. Известны также бактерии, способ питания которых очень напоминает процесс питания зеленых растений, или фотосинтез. Они усваивают из атмосферы углекислый газ и синтезируют сложные органические соединения. Этот синтез требует участия какого-то источника энергии. В данном случае таким источником является солнечный свет. Поэтому весь процесс и называется фотосинтезом. В клетках зеленых частей растений (листьях) находятся хлоропласт ы, в которых происходит процесс фотосинтеза. Фотосинтезирующие бактерии содержат в своих клетках образования, исполняющие ту же функцию; они называются хроматофорами. Если величина хлоропластов у зеленых растений обычно не меньше 5 мкм (как и клеток дрожжей) и они хорошо видны в световом микроскопе, то хроматофоры бактерий в этих условиях невидимы, так как они почти в 100 раз меньше хлоропластов. Но тем не менее их удалось выделить из разрушенных клеток бактерий и наблюдать в микроскопе при увеличении в 70 000 раз.
Интересные образования находятся и в цитоплазме бактериальных «палочек» или бацилл — это споры. Но об их специфических особенностях будет рассказано несколько позже.
Электронный микроскоп проникает в тайны микромира
Исследователей, вооружившихся в целях познания электронным микроскопом, привлекают не только бактерии, но и многие другие микроорганизмы. Они изучают поверхностную структуру клеточных стенок или, подобно хирургам, приготовляют ультратонкие срезы мельчайших клеток и проникают в тайны их внутреннего мира.
Профессора Волькани из Калифорнийского университета заинтересовали диатомовые водоросли. Эти организмы откладывают в стенках своих клеток большое количество кремнезема. После кратковременной обработки этих клеток кислотой электронный микроскоп помог нам открыть сетчатое строение их панциря, а ультрамикротом — заглянуть внутрь клетки и обнаружить ее ядро и множество жировых капелек (фото 20 и 21).
Не менее интересным оказалось и строение клетки простейшего, туфельки Paramecium bursaria, в которой, помимо прочих включений, были обнаружены мелкие клетки зеленой водоросли из рода Chlorella. Так электронный микроскоп позволил установить между этим простейшим и водорослями взаимоотношения, известные под названием симбиоза (фото 22).
В предыдущей главе мы узнали, что грибы размножаются с помощью особых клеток — спор. Интересные данные были получены в Лаборатории электронной микроскопии Высшей федеральной технической школы в Цюрихе. У спор грибов, относимых специалистами к роду Penicillium, была обнаружена своеобразная поверхностная структура. Споры каждого вида выглядят так, точно искусная рука корзинщицы оплела их особым узором (фото 23).
Доктор Янг из Лондонского университета занимался изучением поверхностной структуры спор микроскопических грибов, относимых микологами к порядку Mucorales. У большей части изученных видов споры снабжены тонкими отростками. При взгляде на такую спору в памяти возникает образ обычного оружия гуситов — булавы с острыми шипами. Эти шиповатые выросты имеют в основании правильные шестиугольники и очень равномерно распределены по поверхности споры (фото 24).
Ценные услуги оказал электронный микроскоп и группе исследователей во главе с профессором Нечасом (медицинский факультет в городе Брно). При помощи фермента, выделяемого виноградной улиткой, удалось растворить клеточные стенки дрожжевых грибов и выделить их протопласты. Это очень хрупкие образования, но в руках искусных специалистов они становятся отличным материалом, на котором можно наблюдать формирование клеточных стенок. После перенесения протопластов на обычную питательную среду вокруг них начинают образовываться новые стенки клеток (фото 25 и 26).
Какова же роль отдельных клеточных образований, с которыми мы только что познакомились? Этот вопрос встал перед исследователями; вполне естественно, что его задаст и читатель, узнавший об их открытии.
О защитной функции клеточных стенок мы уже говорили, так же как и о том, что они определяют постоянную, характерную для различных бактерий форму. Если стенку бактериальной палочки отделить от ее содержимого, то протопласт потеряет форму палочки и превратится в шар, сохранив, однако, все свои основные жизненные функции.
Роль цитоплазматической мембраны довольно разнообразна. Ее самая главная и важная функция — поддерживать в клетке определенное осмотическое давление. Сквозь мембрану в клетку поступают вещества, служащие ей источником питания, и выделяются наружу продукты химической активности клетки. Таким образом, цитоплазматическая мембрана играет как бы роль пограничной стражи, которая пропускает внутрь клетки или высылает за ее пределы «избранные» соединения, по-видимому, активно способствуя этому обмену. У простейших, чьи клетки лишены стенок, цитоплазматическая мембрана дает возможность организму изменять форму и вбирать в себя твердые частицы пищи, как при фагоцитозе. Такой же механизм наблюдается и у белых кровяных телец, которые обезвреживают болезнетворные микробы, «поглощая» их.
Ядро — важный жизненный центр клетки. В нем представлен своего рода «планирующий орган», управляющий ее деятельностью и обеспечивающий передачу наследственных особенностей от одной генерации другой. Далее мы увидим, что ответственность за эту операцию несут молекулы дезоксирибонуклеиновой кислоты (ДНК).
В клетках дрожжей и других микроорганизмов, как и в клетках растений и животных, находятся также митохондрии — своего рода энергетические станции клеток. В них протекают процессы химического преобразования веществ, благодаря которым клетка приобретает основную часть необходимой ей энергии. Впрочем, уже точно установлено, что эти процессы происходят и в клетках бактерий, хотя в них митохондрии отсутствуют.
В цитоплазме микробов содержатся образования, называемые рибосома-м и, которые являются центрами синтеза белка в клетке.
Таким образом, мы видим, что в клетке как основной единице живой природы царит строгий порядок и осуществляется целесообразное разделение труда.
Рассказ о таинствах микробных клеток был бы неполным, если бы не содержал сведений, раскрывающих их химические особенности.
Все вещества в природе, входят ли они в состав живых организмов или залегают в глубинах Земли, состоят из основных структурных единиц — атомов различных химических элементов. В результате химического соединения отдельных атомов возникают более крупные единицы— молекулы. Молекула воды, обозначаемая химиками формулой Н20, состоит из двух атомов водорода и одного атома кислорода. Таким образом, вода — это соединение двух элементов, связанных химически в определенных соотношениях. Молекула воды настолько мала, что она невидима даже в электронный микроскоп. Мельчайшие бактерии достигают в диаметре 200 нм, капелька воды такой же величины содержит до 68 000 000 молекул.
Кроме кислорода и водорода, известно еще более 100 химических элементов. Некоторые из них встречаются свободными в природе, другие удалось выделить искусственным путем. Не менее половины всех элементов обнаружили и в клетках микроорганизмов. Из химических элементов, встречающихся в живой природе, помимо водорода и кислорода, очень важную роль играют углерод и азот.
Элементы, постоянно присутствующие в живых организмах, включая и микробы, называют биогенными. О четырех из них мы уже упоминали. К другим, также очень важным биогенным элементам, относятся фосфор, сера, калий, хлор, магний, натрий, кальций. Эти 11 вышеупомянутых элементов мы называем макроэлементами. В весовом отношении они составляют около 99,9 % сухой массы клеток, причем на первые четыре элемента приходится почти 95 %.
В ничтожно малой оставшейся части — 0,1 % сухой массы — представлен целый ряд микроэлементов: железо, медь, марганец, кобальт, бром, йод, фтор, бор, кремний, литий, рубидий, стронций, барий, цинк, ртуть, алюминий, таллий, титан, свинец, мышьяк, селен, никель, ванадий и серебро. В отличие от макроэлементов, входящих в состав клеточного вещества, некоторые микроэлементы имеют лишь характер катализаторов, ускоряющих или замедляющих процессы химических изменений в организме, причем эту роль они выполняют, входя в состав ферментов.
Как видно из таблицы, содержание отдельных элементов в живой природе и в земной коре очень различно. Живые организмы берут из природных запасов только такие количества веществ, которые отвечают их жизненным потребностям. Количественные соотношения биогенных элементов в живых организмах всегда строго поддерживаются на одном и том же уровне.
Химическое изучение веществ живой материи открыло много интересного. Мы узнали, что в клетках организмов встречаются самые разнообразные вещества. Наиболее важными соединениями среди них являются вода, белки, нуклеиновые кислоты, простые и сложные сахара и жиры. Сопоставление содержания перечисленных соединений в живой материи и относительное содержание молекул этих веществ представлены в таблице 2.
Состав молекул отдельных соединений очень различен. Простая молекула воды состоит из трех атомов, тогда как молекулы белков могут содержать 100 000 и более атомов.
Не следует забывать, что атомы элементов, так же как и молекулы, состоящие из этих атомов, крайне малы — во много раз меньше, чем клетки всех известных нам живых организмов. Так, если бы мы увеличили молекулу водорода, состоящую из двух атомов, в 5 000 000 раз, то получили бы шарик диаметром всего около 1 мм. Увеличенная во столько же раз молекула глюкозы (состоящая из 24 атомов) имела бы диаметр 3,5 мм, молекула гемоглобина, окрашивающего кровь в красный цвет, достигала бы 2,75 см, вирус гриппа — 50 см, клетка самой маленькой бактерии — 1 м, клетка дрожжей — 20 м, а красное кровяное тельце человека — до 40 м.
Исследование организмов в природе все больше убеждает нас, что жизнь тесно связана с определенными структурами соединений и что малейшие изменения в строении молекул этих веществ часто имеют важные биологические последствия. Альберт Сент-Дьёрди, выдающийся венгерский биохимик, открывший витамин С, дает следующее определение живой материи: «Живая материя представляет собой своего рода систему из воды и органических соединений, которые, подобно зубчатым колесикам часового механизма, составляют единое целое».
В клетках бактерий содержится 75–90 % воды, остальное составляют прочие соединения. Отчего вода имеет такое огромное значение в жизни микробов? В клетку бактерии не сможет проникнуть мельчайший кристаллик сахара, если он не будет растворен в воде до отдельных молекул. В клетке протекает множество различных химических процессов. Одни сложные вещества разлагаются, другие образуются из более простых соединений; вода же является той необходимой средой, в которой только и могут осуществляться все эти химические реакции.
Гораздо сложнее молекул воды и менее доступны для химического изучения макромолекулы белков. Еще начиная с первой половины прошлого века естествоиспытатели справедливо считали белки одним из главных слагаемых живой природы.
Они играют самые разнообразные роли. Белки являются структурными элементами клеток, а вместе с тем и живого организма в целом. Они исполняют функции биохимических катализаторов, которые обусловливают, направляют и ускоряют почти все химические реакции, происходящие в живой природе. Эту группу белков объединяют под общим названием ферментов. Некоторые белки являются важными регуляторами жизненных процессов в нашем организме, их относят к гормонам.
Макромолекулы белков обеспечивают жизнь, но есть среди них и такие, которые убивают ее. Так, токсины некоторых растений, животных и бактерий в основном представляют собой белки, причем, как мы увидим далее, наиболее ядовитые из них — бактериальные токсины.
Интересны белки и своим химическим строением.
Схема соединения аминокислот в полипептиды, напоминающие по форме альфа-спираль. Атомы химических элементов обозначены буквенными символами: С — углерод; Н — водород; О — кислород; N — азот; R — радикалы, различные у разных аминокислот.
При исследовании химической структуры белков оказалось, что основными структурными единицами их макромолекул являются аминокислоты; это открытие послужило важным шагом на пути к их познанию. Теперь нам известно уже 20 таких структурных единиц.
Итак, первый факт, осветивший нам качественную сущность таинственных белков, заключался в том, что они состоят из отдельных аминокислот.
Дальнейшим шагом были попытки установить количественные соотношения аминокислот в молекулах различных белков. Но достигнутый в этом отношении успех еще не говорил нам о том, как именно связаны между собой аминокислоты. Комбинации их различных сочетаний могут быть чрезвычайно многочисленны!
Из 20 аминокислот может возникнуть такое количество сочетаний, столько отличных друг от друга белковых макромолекул, что на их создание не хватило бы и всей массы нашей планеты. Именно эта многоликость белков и обеспечивает, по-видимому, огромное разнообразие живой природы.
Современной науке оказывается по плечу и более трудная задача — установить характер расположения аминокислот в молекулах белков. В этом направлении первым успехом было раскрытие структуры гормона инсулина. Английский биохимик Ф. Сенджер точно установил распределение аминокислот в молекуле инсулина, выделенного из организма крупного рогатого скота, и доказал, что она состоит из двух равных частей. В каждой из них имеется два пептида — А и В, соответственно содержащих 21 и 30 аминокислотных остатков. Цепи А и В дважды связаны между собой дисульфидами. В настоящее время уже известны структура инсулина, содержащегося в организме человека, и строение некоторых других белков.
Не менее важен для жизни человека и такой белок, как гемоглобин. Без него не мог бы протекать один из основных жизненных процессов — дыхание.
Молекула гемоглобина теперь хорошо изучена. Нам известно, что она содержит 3032 атома углерода, 4816 атомов водорода, 872 атома кислорода, 780 атомов азота, 8 атомов серы и 4 атома железа (всего 9512 атомов различных элементов); мы знаем также точное расположение аминокислот в молекуле гемоглобина, ее так называемую третичную структуру, которая определяет пространственное расположение всех 9512 атомов.
Познание пространственного распределения белковых макромолекул позволит в ближайшем будущем еще глубже понять их разнообразные биологические функции.
В живой природе мы находим и другую группу очень важных макромолекул, привлекающую в последние годы все большее внимание биологической науки. Это нуклеиновые кислоты.
Первые сведения о них получил почти сто лет назад швейцарский биохимик Фридрих Мишер. Из клеточных ядер спермы лосося он выделил вещество, названное им нуклеином, которое, как оказалось, содержало пять биогенных элементов: углерод, водород, кислород, азот и фосфор. Теперь это вещество мы называем нуклеиновой кислотой.
Макромолекулы нуклеиновых кислот могут быть двух типов: дезоксирибонуклеиновая кислота, или ДНК, и рибонуклеиновая кислота, или РНК[6].
ДНК находится в основном в клеточном ядре (а в малых количествах также в митохондриях и хлоропластах), тогда как РНК встречается и в ядре и в цитоплазме. Этот факт находится в тесной связи с различными функциями нуклеиновых кислот, о которых речь еще впереди.
Узнаем мы также о предназначении и роли ферментов и познакомимся с химическим характером некоторых других соединений, играющих на арене жизни очень важные роли.
Благодаря биофизике — одной из отраслей науки, с которой мы уже познакомились в начале этой главы, — были получены весьма интересные данные. Возьмем, например, шаровидную бактериальную клетку диаметром 0,5 мкм. Поверхность такой клетки будет равна 0,0000000079 см2, объем — 0,000000000000065 см3, а вес — 0,000000000000069 г. Из общего ее веса 75 % приходится на воду, остальное представляет сухое вещество весом 0,0000000000000172 г, в которое входят: белки — 53 % сухого вещества, сахара — 16 %, нуклеиновые кислоты—18 %, жиры — 10 % и остальные мелкие молекулы — 3 %. Молекулы соединений, составляющих сухое вещество бактериальной клетки, представлены 40 типами структурных элементов, перечень и количественное соотношение которых даны в таблице 3.
Все эти структурные элементы входят в состав различных химических соединений, которые вместе с простыми и сложными белками образуют клеточную стенку и цитоплазматическую мембрану, а вместе со сложными сахарами, жирами и белками имеются и в рибосомах. В одной только клетке насчитывается до 5000 рибосом, и в них, как известно, протекает синтез новых белковых молекул, Кроме того, в клетке имеется еще около 150 000 свободных молекул белков, причем большую часть из них составляют ферменты, направляющие все химические реакции. К перечисленному следует добавить, что клетка имеет еще около 8 500 000 более простых молекул, которые служат связующими звеньями или являются продуктами обмена веществ, а также около 5 000 000 молекул неорганических соединений.
С еще более крупными числами мы столкнемся при подсчете атомов главнейших 13 биогенных элементов. Общее их количество в одной только клетке превышает 5 500 000 000!
Не удивительно, что такое разнообразие живого субмикрокосмоса привлекает внимание многих ученых, которые вместе с Левенгуком могли бы воскликнуть: «Сколько чудес таят в себе эти крохотные создания!»
Жизнь — это не что иное, как строго упорядоченное взаимодействие ферментативных процессов.
Клетку микроорганизма можно сравнить с микроскопически малой химической фабрикой. Она получает «сырье» из окружающей среды и делает из него настоящие чудеса. Из простых соединений — углерода, азота, кислорода, водорода — она синтезирует белки, из сахаров — органические кислоты и спирты, а в атмосферу выделяет углекислый газ. Вырабатывает клетка и витамины, а растениям поставляет важные ростовые вещества.
В клетках микроорганизмов образуются антибиотики, при помощи которых их производители могут обезвредить противников из мира микробов. В них вырабатываются и опасные яды, малейшие дозы которых способны убить человека.
Микроорганизмы синтезируют красящие вещества самых различных оттенков. Несмотря на такое разнообразие процессов, в этой микроскопической фабрике все подчинено строгой закономерности. Энергия, высвобождающаяся в результате одного процесса, используется в другом. Кроме того, микробы выделяют в окружающую среду тепловую энергию.
Закономерное движение и активность — одно из главнейших проявлений жизни. Однако живая клетка не может быть вечным двигателем. Строительный материал она получает извне, энергию черпает из энергетических ресурсов природы.
Откуда же микробы достают себе пищу и как ее перерабатывают? Где берут запасы энергии и как ее используют?
В живых клетках происходят многие химические реакции, воспроизвести которые в лаборатории оказалось возможным лишь при создании специфических условий. Одни из них протекают при высоких температурах, другие требуют повышенного давления. Как же совершаются они в живой клетке при нормальных давлении и температуре?
В начале XIX века стало известно о явлении спиртового брожения и участии в нем дрожжевых грибов. Пастер в своих исследованиях доказал, что различные типы брожения вызываются различными видами микроорганизмов. Значительно раньше известный шведский химик Йене Якоб Берцелиус разработал учение о катализаторах, или ускорителях (стимуляторах) различных химических реакций.
Позднее ученые предположили, что микроорганизмы как раз и содержат такие вещества, которые вызывают брожение и в своем действии подобны катализаторам. Их назвали энзимами (от греческих слов en — внутри и zyme — закваска), или ферментами. В 1897 году немецкому химику Эдуарду Бухнеру удалось получать из разрушенных клеток дрожжей смесь ферментов, которую он назвал зимазой. Зимаза вызывала превращение сахара в спирт даже при отсутствии живых клеток.
Теперь нам известно, что все химические реакции в живых клетках протекают лишь в присутствии ферментов; если же последние отсутствуют, то реакции эти совершаются очень медленно или вообще не происходят. Вспомним, например, химическую реакцию молочного сахара (лактозы) с водой, при которой молочный сахар разлагается на глюкозу и галактозу. В отсутствие катализаторов эта реакция протекает чрезвычайно медленно, даже при 100 °C разлагается лишь небольшая часть лактозы. Реакцию можно ускорить, если добавить определенные кислоты. Отдельные дрожжевые грибы обладают ферментом лактазой, в присутствии которого разложение лактозы происходит очень быстро уже при 30 °C. Фермент лактаза действует, таким образом, как катализатор — ускоритель химической реакции.
Ферменты образуются в результате жизнедеятельности клеток. Без ферментов нет жизни, но сами они не являются живой материей. Их способность ускорять химические процессы сохраняется и после гибели клеток.
Ферменты, возникающие в живых клетках, или остаются в них, стимулируя химические реакции, или же выделяются клеткой во внешнюю среду, где также могут влиять на скорость некоторых химических процессов. Каждый фермент принимает участие обычно в нескольких (немногих) реакциях и никогда не бывает приурочен к одной-единственной. Причем следует заметить, что для превращения больших количеств соединений требуется необычайно малая доза фермента.
Не менее интересной особенностью ферментов можно считать их повышенную восприимчивость к различным внешним факторам, которые могут ускорять, замедлять или вовсе прекращать их деятельность.
Ферменты — очень сложные соединения, их относят к белкам. Некоторые ферменты удалось получить в чистом виде, в кристаллической форме, и был точно установлен их химический состав.
Ферменты играют огромную роль не только в жизни микробов, но и в жизни всех других организмов. Важные функции выполняют они и в нашем теле. Ферменты, находящиеся в слюне, желудочном соке и выделениях других органов, разлагают сложные вещества нашей пищи на простейшие составные части; таким путем они способствуют проникновению питательных веществ через слизистую оболочку кишечника в кровь, с которой те разносятся по всему телу. Там эти вещества снова встречаются с ферментами, уже иными, вызывающими сотни других химических реакций.
Микроорганизмы также «вырабатывают» ферменты, необходимые им для усвоения питательных веществ и получения энергии. Одни ферменты обеспечивают процессы разложения, другие осуществляют синтез сложных соединений из простых веществ. В клетках этих мельчайших существ может образоваться такое большое количество ферментов, что человек использует микробы для получения ферментов в промышленных масштабах.
Одно из условий существования живых организмов — наличие достаточных количеств пищи. Рост, размножение и прочие жизненные процессы не могут осуществляться без питательных веществ.
Без пищи не могут обойтись и микробы. Уже при нашем первом посещении микробиологической лаборатории мы обратили внимание на своеобразное «меню» микробов. Все элементы, из которых состоит живое вещество клеток, они должны получать извне в виде питательных веществ. Это означает, что микробы должны иметь источники углерода, азота и других биогенных элементов. В природе микроорганизмы находят питательные вещества в самой различной форме. Одни из них питаются отмершими частями растений или животных; это так называемые сапрофит ы, играющие огромную роль в круговороте жизненно необходимых элементов на Земле. Другие значительно более требовательны. Они нападают на живые организмы и ведут паразитический образ жизни. К ним относятся и возбудители многих болезней.
Переходной формой от сапрофитов к паразитам являются симбиоти-ческие микроорганизмы, с которыми мы познакомимся в дальнейшем. Классификация всех организмов по способу их питания представлена в табл. 4.
Из таблицы видно, что бактерии имеют своих представителей во всех группах организмов, различающихся по способу питания.
Основным источником питания большинства микроорганизмов служат сахара. При их разложении выделяется энергия; они же являются и главным источником углерода. Правда, некоторые микробы удовлетворяются простым соединением углерода и кислорода — углекислотой, а необходимую для жизни энергию черпают из других источников.
Микробы, которые в своем питании «довольствуются» углекислотой или некоторыми другими простыми углеродными соединениями, называются автотрофными. Они строят живую материю своих клеток из минеральных соединений. Если они при этом в результате химических преобразований получают еще и необходимую энергию, мы относим их к хемосинтезирующим микроорганизмам; если же они получают энергию непосредственно от солнечной радиации, мы называем их фотосинтезирующими.
Самая важная группа автотрофных организмов — зеленые растения. Им достаточно таких питательных веществ, как углекислота из атмосферы, вода и минеральные соли из почвы.
В зеленых растениях протекает чрезвычайно важный процесс — фотосинтез. Во время этого процесса из углекислоты к воды образуются сахара, основные углеводные соединения, из которых затем под действием ферментов создаются все остальные сложные вещества растительного организма. Фотосинтез осуществляется в листьях и других зеленых частях растений.
Неутомимый ученый-экспериментатор и гениальный художник Леонардо да Винчи, живший на рубеже Средневековья и Нового времени, писал: «Лицевая сторона листьев обращена к небу, она улавливает пищу в росе, выпадающей по ночам».
Своей зеленой окраской листья обязаны зеленому пигменту — хлорофиллу, который находится в хлоропластах клеток листа. По химическому составу хлорофилл близок к гемоглобину, красному пигменту крови. Но роль хлорофилла не только в том, что он окрашивает растения в зеленый цвет. Его главное значение в том, что, поглощая энергию солнечного света, он использует ее в химических реакциях, в результате которых образуются сахара. Таким образом, помимо углекислоты и воды, для синтеза сахаров необходимы еще присутствие в зеленых частях растений хлорофилла и действие солнечного света. В темноте фотосинтез осуществляться не может.
На поверхности листьев находятся микроскопические отверстия, называемые устьицами, через которые происходит газообмен. Из атмосферы в листья проникает углекислый газ. Вода, усваиваемая корнями из почвы, поднимается к листьям, и там часть ее используется в реакциях фотосинтеза, а часть испаряется через устьица в атмосферу. Через устьица же выделяется в атмосферу и кислород, представляющий собой «отход» фотосинтеза.
Наиболее простая форма сахара, образующегося при фотосинтезе, — глюкоза. Каждая молекула глюкозы состоит из 24 атомов: 6 атомов углерода (С), 12 атомов водорода (Н) и 6 атомов кислорода (О).
Весь ход процесса фотосинтеза можно представить следующей упрощенной химической формулой:
6С02 + 6Н20 + Энергия света → С6Н1206 + 602, или
Углекислота + Вода + Энергия света → Глюкоза + Кислород.
Таким образом, из 6 молекул углекислого газа и 6 молекул воды образуются 1 молекула глюкозы и 6 молекул кислорода. Из 6 молекул углекислого газа в атмосферу возвращаются 6 молекул кислорода, причем потраченная на это энергия не теряется, а «консервируется» в глюкозе.
Что же происходит далее с глюкозой, образовавшейся в результате фотосинтеза? Уже через сутки она преобразуется в более сложные сахара и наконец в крахмал. Ночью, когда процесс фотосинтеза прекращается, крахмал частично снова превращается в глюкозу, которая переходит из листьев в другие части растения, где используется для образования различных соединений. Одни из них (например, целлюлоза и пектин) формируют опорные части растений, накапливаясь преимущественно в клеточных стенках, другие откладываются «про запас». Таким резервным веществом является, например, крахмал в клубнях картофеля и зернах хлебных злаков, масло в семенах, сахар (сахароза) в сахарной свекле и сахарном тростнике. Глюкоза служит также основным сырьем для образования аминокислот, белков, витаминов и других соединений. Во многих из них мы найдем азот и другие элементы, которые в виде солевых растворов всасываются корнями из почвы и распространяются по всему растению.
Растительноядные животные питаются травой, листьями, молодыми побегами и плодами растений. Хищники поедают растительноядных животных. Человек с давних пор сеял хлебные злаки в долине Нила, выращивал рис в странах Дальнего Востока, кукурузу в Америке. Микроорганизмы питаются плодами растений и их отмершими остатками. Кроме автотрофных микробов, все организмы, населяющие земной шар, потребляют пищу, которую создают из минеральных солей, воды и углекислого газа зеленые растения.
Нам уже известно, что углерод — один из важнейших биогенных элементов. Обычно он связан в соединениях, находящихся во всех клетках организма. Кроме того, мы встречаемся с ним и в атмосфере, где он входит в состав углекислого газа — важного сырья, используемого в процессе фотосинтеза. Связанный углерод содержат и такие горные породы, как известняк или доломит. Всех известных нам в природе углеродных соединений не меньше полумиллиона. Мы находим углерод в сырой нефти, подземных газах, минеральных водах, газообразных веществах, выделяемых вулканами. Но в природе углерод встречается и в чистом виде. Алмаз, самое твердое в природе вещество, — чистый кристаллический углерод. Каменный и древесный уголь, торф — все это формы углерода растительного происхождения.
При горении угля, торфа или древесины выделяется тепловая энергия. Это и есть та энергия, которая была «законсервирована» в соединениях углерода. При сгорании в присутствии кислорода эти соединения снова переходят в простые вещества — углекислый газ и воду, из которых они образовались.
Процесс «сгорания» происходит и в живых организмах. При этом освобождается энергия, используемая обычно в синтезе сложных соединений, например белков. «Сгорание» в клетках живых организмов идет значительно медленнее, чем при настоящем горении, так как, если бы тепловая энергия освободилась сразу в большом количестве, организм погиб бы. «Горение» осуществляется за счет постепенного разложения сложных сахаров на все более простые соединения, вплоть до конечных продуктов — воды и углекислого газа, уходящего в атмосферу. Огромную роль в этом процессе играют ферменты. При постепенном разложении сахаров скрытая в них энергия освобождается понемногу и клетки имеют возможность расходовать ее очень экономно, сообразно с потребностью организма.
Происходящий в живых клетках процесс разложения сложных сахаров на более простые соединения называется диссимиляцией. Если диссимиляция происходит при достаточном доступе кислорода, мы говорим о дыхании.
Другой пример диссимиляции — брожение, при котором клетка лишена достаточного количества кислорода. При спиртовом брожении образуется спирт, при молочнокислом — молочная кислота.
«Приверженцы» фотосинтеза находятся и среди микробов. Кроме зеленых водорослей, ассимилирующих углекислый газ подобно высшим растениям, сюда относятся еще и сине-зеленые водоросли. Это очень непритязательные микроорганизмы, которые не требуют для своего питания никаких органических соединений. Нередко их находят в толще известковых и других горных пород. В 1883 году на острове Кракатау, между Суматрой и Явой, произошло извержение вулкана, уничтожившее 36 000 человек и все живое на острове. Сине-зеленые водоросли были первыми живыми организмами, вновь появившимися здесь после грозной катастрофы.
Большая часть автотрофных микроорганизмов получает энергию, освобождающуюся в процессе химических реакций между некоторыми неорганическими соединениями. Особую группу составляют пурпурные и зеленые серобактерии, имеющие в клетках пигменты, которые напоминают по своим свойствам хлорофилл. В этих бактериях на свету осуществляется фотосинтез. В других серных бактериях, не имеющих красящих веществ, протекает лишь хемосинтез, при котором сероводород постепенно окисляется до серной кислоты.
При окислении сероводорода и превращении его в серную кислоту освобождается энергия, используемая серобактериями для синтеза сахаров. Нередко процесс окисления прекращается в начальных фазах, и тогда в клетках бактерий откладывается сера. В Черном море, содержащем огромное количество сероводорода, на глубине около 2000 м живут серобактерии, которые окисляют сероводород, препятствуя его проникновению в верхние слои, где этот газ сделал бы невозможным существование морских животных.
В железистых водах или в мелких болотах со стоячей водой живут автотрофные железобактерии, окисляющие соли закисного железа до окисных соединений с освобождением химической энергии. На поверхности болот образуется пленка из гидроокиси железа, придающая воде ржавый цвет.
Зеленые растения, аккумулирующие при фотосинтезе энергию солнца, накапливают ее в форме химической энергии в сахарах, где она и сохраняется вплоть до их диссимиляции. Если растения станут пищей других организмов (в том числе и микробов), скрытая в сахарах энергия перейдет в эти организмы и будет способствовать протекающим в них жизненным процессам.
Энергия, освобождающаяся при диссимиляции сахаров, служит не только для внутренних потребностей клеток. Немалая ее часть излучается в окружающую среду в виде тепловой энергии. Такое освобождение тепла нам знакомо, например, когда разлагается влажное сено или конский навоз. Если влажное сено сложить в стога, в нем начнут размножаться бактерии и плесневые грибы, и температура будет повышаться, порой достигая 70 °C. Иногда в результате подобной жизнедеятельности бактерий образуются химические вещества, вызывающие самовозгорание сена.
Происходящее под влиянием микробов превращение глюкозы в спирт или молочную кислоту — процесс очень сложный. Глюкоза при участии ферментов преобразуется, проходя целый ряд этапов, в «ключевое» соединение — пиро-виноградную кислоту, в молекуле которой ровно в два раза меньше углеродных атомов, чем в молекуле глюкозы. Эта кислота возникает при спиртовом, молочнокислом, а также при других типах брожения.
Количество энергии, выделяемое при разложении одного и того же количества глюкозы, зависит от степени распада вещества. Чем проще конечный продукт распада, тем большее количество энергии высвобождается. Максимальное ее количество выделяется при дыхании, когда углеводы разлагаются, окисляясь кислородом воздуха до углекислого газа и воды.
Соединения, образующиеся при разложении сахаров, по своему химическому составу бывают очень разные. Одни из них возникают в отсутствие кислорода, другие — только в его присутствии. При брожении сахаров с участием микробов образуются органические кислоты (молочная, масляная, лимонная, щавелевая), а также некоторые органические растворители (ацетон, бутиловый и пропиловый спирты и др.).
Разложение сахаров, вызываемое микробами, мы назвали брожением. Но многие микробы участвуют и в разложении белков отмерших организмов или их выделений. Если в этом процессе используется кислород воздуха, белки распадаются на все более простые соединения, вплоть до минеральных (неорганических) веществ; тогда уже говорят о «минерализации» белков. Разложение в присутствии кислорода называется аэробным гниением. Его вызывают чаще всего грибы.
Анаэробное разложение, или гниение, белков происходит в отсутствие кислорода. Когда-то этот процесс считали чисто химическим, пока Пастер не доказал, что гниение — это результат жизнедеятельности микроорганизмов. С процессами гниения мы часто сталкиваемся в повседневной жизни. Им подвержены все продукты, содержащие белки. Так, постоявшие несколько дней молоко или творог приобретают неприятный запах, что указывает на начало процесса гниения.
При разложении белков прежде всего высвобождаются аминокислоты, а уже из них аммиак, углекислый газ и сероводород. Нередко при гниении белков выделяются соединения с резким, неприятным запахом — индол и скатол, — содержащиеся в экскрементах. Они образуются в результате деятельности микроорганизмов, живущих в толстых кишках. К таким микроорганизмам относится и широко распространенная бактерия Proteus vulgaris. Ее родовое название говорит о сильной изменчивости этого микроба. (Протей в греческой мифологии был волшебником-великаном, по желанию изменявшим свой облик.)
Гниению подвержены захороненные трупы; при этом образуются сильноядовитые вещества, которые объединяют под общим названием птомаинов (от греческого слова ptoma — труп). Поскольку по своему химическому составу эти вещества схожи с растительными ядами — алкалоидами, в прошлом они нередко были причиной судебных ошибок: осуждали ни в чем не повинных людей за отравление только потому, что в мертвых телах находили сходные с алкалоидами птомаины, возникшие в результате жизнедеятельности микробов. Гниющие тела разлагаются под действием микроорганизмов до минеральных соединений; даже скелет, более устойчивый к гниению, и тот по прошествии длительного времени превращается в прах.
Еще Аристотель в IV веке до н. э. писал, что «некоторые тела способны светиться во тьме, например грибы, мясо, головы и глаза рыб».
Светящиеся бактерии излучают зеленый или голубоватый свет, хорошо заметный в темноте. Свечение это возможно лишь в присутствии кислорода. Оно подчас бывает настолько интенсивным, что позволяет без дополнительного освещения фотографировать культуры этих бактерий в лаборатории. Часто такие бактерии обитают и в морской воде. Их выделяют из рыб и некоторых других морских животных. В тропических морях находят и симбиотические бактерии. Органы, на которых поселяются светящиеся бактерии, служат им питательной средой. Помимо глаз, эти так называемые светящиеся органы находят и на других частях тела. Так, у рыб развились особые кожные образования, прикрывающие их светящиеся органы и таким образом регулирующие излучение света.
Известны культуры светящихся бактерий, при свете которых можно в темном помещении читать отпечатанный крупным шрифтом текст или различать стрелки на циферблате карманных часов.
Светятся также и грибы, например опенок. Учеными описаны светящиеся пауки и муравьи, обязанные своим «светом» симбиозу с бактериями.
Интересно наблюдать колонии микроорганизмов в чашке Петри. Пытливый глаз человека различит здесь множество разнообразных цветовых оттенков. Колонии грибов, например, могли бы быть поставщиками красящих веществ, как самая совершенная фабрика по производству красителей. Мельчайшие черные головки, словно зернышки мака, покрывают колонию гриба, названного из-за своей черной окраски Aspergillus niger (niger по-латински значит черный). Другой гриб — A. flavus (что значит желтый) — образует колонии красивого желтого цвета, а колонии Penicillium chrysogenum, вырабатывающего пенициллин, окрашены в ярко-зеленый цвет (фиг. IV, вверху справа).
Колонии дрожжей бывают самой различной окраски — желтые, оранжевые, красные, белые, кремовые, розовые, фиолетовые, черные или коричневые (фиг. IV, вверху слева и внизу справа).
Не уступают грибам и бактерии. Окраска их колоний очень разнообразна: Staphylococcus albus образует белые колонии, Bacterium violaceum — фиолетовые, Bacillus janthinus — цвета индиго, Pseudomonas aeruginosa — голубые, Bacterium fluorescens — зеленые, Sarcina lutea — желтые, Serratia marcescens — красные (фиг. IV, внизу слева).
Из микроорганизмов были выделены многие красящие вещества и изучен их химический состав. Некоторые из них, улавливая световую энергию, принимают участие в фотосинтезе. У зеленых водорослей это зеленый хлорофилл, а у сине-зеленых водорослей — голубоватый фикоциан.
В клетках нескольких видов микробов было установлено присутствие красящего вещества крови — гемоглобина! Некоторые из этих красящих веществ являются антибиотиками, как, например, желтый хлортетрациклин или красный актиномицин.
Древнеримский историк Квинт Курций Руф в своей «Истории Александра Македонского» так описал одну из его побед при покорении Малой Азии. При осаде города Тироса в 332 году до н. э. в армии Александра Македонского произошло неприятное событие — в хлебе появились большие красные пятна, напоминающие пятна крови, и солдат охватил страх. Они посчитали это за плохое предзнаменование. Хитрый придворный мудрец Александра истолковал это «знамение» так: «Кровавые пятна действительно знак богов, но поскольку они находятся внутри запеченного хлеба, это означает гибель войск, находящихся внутри осажденных стен города. Боги указывают на свою благосклонность войскам Александра и дают понять, что его победа обеспечена». Толкование мудреца так подняло дух армии, что солдаты с воодушевлением атаковали стены города и в скором времени захватили его.
Схожие случаи известны и из истории Средних веков. В VI веке «кровавые пятна» в хлебе появлялись во французском городе Тур.
Подобные же пятна вызвали сильное волнение в 1819 году в итальянском селе Леньяро близ Падуи. В одном из домов на кукурузных лепешках появились красные пятна. Вскоре «эпидемия» охватила всю деревню и потребовалось вмешательство властей, поскольку волнение населения приняло характер паники. Комиссия специалистов исследовала загадочный случай. Все указывало на то, что «кровавые» пятна вызваны какими-то микроорганизмами. Один из членов комиссии перенес некоторое количество «зараженного» хлеба на свежий, и пятна очень скоро появились и на этом хлебе. Это было верное доказательство того, что возбудитель «эпидемии» — живой организм. После дезинфекции зараженных продуктов распространение красных пятен прекратилось. В честь мореплавателя Серрати эту «чудотворную» бактерию назвали Serratia marcescens (marcescens означает гниющий). S. marcescens синтезирует в своих клетках кроваво-красное красящее вещество продигиозин. Теперь мы уже не только знаем химический состав этого вещества, но и научились получать его искусственным путем. Этого впервые добились в 1962 году американские химики Г. Раппопорт и К. Г. Холден.
Хорошо известно, что для нормального роста и развития человека и животных недостаточно пищи, содержащей только источники энергии и «строительного» материала. Животному организму необходимо еще небольшое количество веществ, названных польским врачом Казимиром Функом (1912) витаминами. К ним относятся соединения, создать которые сам организм не в состоянии и должен усваивать их с пищей. Недостаток витаминов в пище обычно вызывает различные болезненные симптомы.
Большая часть витаминов растительного происхождения. Некоторые из них (витамин А и витамин D) принимают свой окончательный химический облик лишь в организме животных, где они создаются из близких по составу провитаминов, содержащихся в пище.
Витамины очень тесно связаны с ферментами и, как правило, входят в состав последних в качестве так называемых коферментов. Такие ферменты состоят в основном из двух частей: апофермента, соединения белкового характера, и кофермента, представленного обычно одним из витаминов. В качестве примера сложного фермента можно привести карбоксилазу, которая при разложении сахаров освобождает углекислоту из пировиноградной кислоты. Кофермент карбоксилаза (или кокарбоксилаза) и есть витамин В1 который связан с молекулой фосфорной кислоты.
Такие ферменты бывают активными только в тех случаях, если обе их составные части — апофермент и кофермент — соединены между собой. Недостаток витамина приводит к ослаблению активности соответствующего фермента.
Зеленые растения, как уже было сказано, сами производят необходимые витамины. Животные же получают витамины с пищей, так как неспособны образовывать их из основных элементов. Раньше считалось, что микробы не нуждаются в витаминах. Такая точка зрения была основана на том факте, что плесневый гриб Aspergillus niger, о котором мы уже не раз упоминали, размножается на питательных средах в отсутствие витаминов. Однако позднее от этого мнения пришлось отказаться, поскольку многие другие микроорганизмы не могли развиваться в средах, лишенных витаминов.
Известно, что гриб Phycomyces blakesleeanus не растет без витамина В1. Для выращивания 1 мг сухого вещества этого гриба необходимо 5 мкг витамина В1. Доза ничтожная, но совершенно необходимая для его развития.
Помимо витаминов многие микробы требуют для своего существования и не-которых других соединений, в том числе аминокислот. Такие «дополнительные» соединения, включая витамины, необходимые для роста микробов, мы называем ростовыми веществами.
Особенно нуждаются в ростовых веществах молочнокислые бактерии. Молоко как естественная среда их обитания содержит и витамины и аминокислоты, однако в течение длительного периода развития эти микроорганизмы как бы «избаловались» и перестали вырабатывать ростовые вещества. Другие же микробы, напротив, сами синтезируют витамины из основных питательных веществ и откладывают их в своих клетках. Дрожжи, например, очень богаты витаминами из группы В.
Свежевспаханное поле обязано своим характерным запахом почвенным организмам — актиномицетам. Запах масла и различных сыров также по большей части определяется микробами, выделяющими пахучие вещества. Соединения, обусловливающие аромат вина, являются продуктами жизнедеятельности некоторых дрожжей и других микроскопических грибов, присутствующих еще в свежем винограде, а также бактерий, продолжающих свою деятельность в процессе брожения.
Микробы являются источником многих очень неприятных, а часто и ядовитых пахучих веществ. Давно известно о случаях смерти людей в помещениях, оклеенных обоями, которые были натерты «швейнфуртской зеленью». Микроскопические грибы, разлагающие швейнфуртскую зелень, выделяют летучие соединения мышьяка. Особую активность проявляет при этом гриб Penicillium brevicaule, способный из мышьяковых соединений образовывать органические вещества с запахом чеснока.
Неприятные гнилостные запахи образуются не без участия сероводорода, аммиака и других соединений, возникающих в результате жизнедеятельности гнилостных бактерий при разложении белков. Отдельные микроорганизмы выделяют летучие вещества, которые оказывают раздражающее влияние на родственные микробы. Гифы микроскопических грибов, например, растут в направлении источника этого химического раздражения.
Жизнь есть творение
Левенгук, сообщая Лондонскому королевскому обществу о наблюдаемых им «зверушках», писал, что они отличаются способностью очень быстро передвигаться. Мы уже рассказывали, что, по предположению Левенгука, микробы должны иметь ножки, хотя увидеть их ему не удавалось. Мы узнали также и о том, что органы движения бактерий видны только при очень сильном увеличении в электронном микроскопе; ими оказались не ножки, предсказанные Левенгуком, а жгутики.
Мы, так же как и Левенгук, можем наблюдать движение бактерий под обычным микроскопом и не видеть при этом их жгутиков. Если на предметное стекло капнуть капельку несвежего молока и наблюдать ее под микроскопом, нашему взору откроются движущиеся бактерии. Одни из них будут медленно змееобразно извиваться, другие — стрелой пролетать через все видимое поле. Итак, после вопроса об органах движения бактерий мы приходим ко второму интересующему нас вопросу — о скорости передвижения бактерий.
И здесь, в царстве микробов, как и в мире крупных животных, мы найдем своих спринтеров и стайеров. Серобактерии из рода Chromatium за секунду проплывают расстояние 20–40 нм, а бактерии из рода Spirillum — до 100 нм. Spirillum длиной 10 нм проплывает за секунду расстояние в десять раз большее, чем его длина. Это соответствует скорости бегуна ростом 170 см, который пробегает в секунду 17 м; при такой скорости в час он должен был бы пробежать более 60 км! Однако мы знаем, что и лучший бегун мира способен пробежать 10 км лишь за полчаса. Таким образом, отношение скорости к высоте тела у спортсменов-бегунов втрое меньше, чем у спирилл, которые должны к тому же преодолевать значительно большее сопротивление, чем то, которое преодолевает бегун.
Но в мире микробов мы знаем еще более выдающихся «рекордсменов». Микроскопические грибы, обитающие в воде, размножаются зооспорами — подвижными овальными или круглыми спорами, которые снабжены жгутиками. Некоторые из них проплывают за секунду расстояние в 25 раз большее, чем их длина, а зооспоры водной плесени Actinoplanes — даже в 99 раз большее! Бегун на стометровой дорожке за секунду пробегает расстояние, лишь в 7 раз превышающее его высоту. Если бы он хотел достичь скорости зооспор, ему нужно было бы пробежать за час около 600 км!
При помощи жгутиков передвигаются и простейшие, принадлежащие к крупной систематической группе жгутиковых. Амебы осуществляют активное движение тем, что переливанием цитоплазмы изменяют форму своих клеток и выдвигают из них так называемые псевдоподии, что позволяет им передвигаться даже по твердому субстрату. Однако нам известны многие виды микробов, движущихся только пассивно, вместе с массой жидкости. К категории этих «ленивых» микробов относятся, например, уже знакомые нам по спиртовому брожению дрожжи, а микроскоп показал, что пекарские дрожжи — не что иное, как спрессованные клетки дрожжей. Микробы могут пассивно переноситься и мельчайшими частицами пыли или капельками слюны, которые при чихании и кашле выбрасываются в окружающую среду.
Таким образом, невидимый мир микробов находится в природе в постоянном движении (пассивном или активном). Движение — одно из существенных проявлений жизни. Оно происходит и внутри клеток, где постоянно движутся молекулы различных соединений или клеточных образований.
Как сказал известный французский физиолог XIX века Клод Бернар, жизнь есть творение. Живые организмы отличаются от неживой природы главным образом тем, что растут и размножаются. Их рост и размножение лучше всего наблюдать у таких одноклеточных микроорганизмов, как бактерии или дрожжи.
Рост бактериальной клетки не безграничен. Достигнув определенной величины, она перестает расти. Но ее жизнь при этом не кончается, она продолжает создавать живую материю, и под микроскопом мы можем наблюдать, как в известный момент она начинает делиться на две части, которые вскоре отделяются друг от друга и становятся двумя самостоятельными равноценными организмами. Так из одной материнской клетки появляются две дочерние. Вырастая, они тоже делятся, и в результате образуются четыре клетки, потом восемь, шестнадцать и т. д. Клетки, возникшие из одной материнской, представляют уже новое поколение (новую генерацию), подобно человеческому потомству (фото 27 и 28).
Время от возникновения клетки до ее деления на последующие две, то есть продолжительность существования одной генерации, называется временем генерации. В природе наблюдается определенная закономерность: чем мельче организм, тем скорее появляется у него новое потомство. Бактерии при благоприятных условиях размножаются очень быстро. Из них быстрее всего — кишечная палочка Escherichia coli; каждые 20 мин материнская клетка делится на две дочерние. Если бы размножению клеток кишечной палочки ничто не препятствовало, из одной бактерии в течение одних только суток возникло бы такое количество клеток, что из них можно было бы соорудить пирамиду с основанием в 1 км2, а высотой до 1000 метров.
Так же быстро размножается и возбудитель холеры Vibrio cholerae. При благоприятных условиях каждая клетка делится по прошествии 20 мин на две дочерние. Подсчитаем результат размножения только одной исходной клетки холерного вибриона в течение 48 ч. За 4 ч должно совершиться 12 делений и из одной клетки образоваться 4096 клеток. По прошествии 6 ч их стало бы уже 262 144, а через 10 ч — 664 141 904! После 48 ч количество клеток выражалось бы числом, представляющим цифру 22 с 42 нулями, а общий вес этой массы клеток в тоннах — цифрой 22 с 24 нулями, то есть вес в 4000 раз больший, чем вес всего земного шара. Однако мы видим, что в природе размножение микробов не может продолжаться столь долгое время.
Схема размножения микроорганизмов с различным периодом генерации. Культура А делится через 60, культура Б — через 30 мин. Через 2 ч каждая из клеток культуры А будет иметь четырехчленное, а клетка культуры Б — шестнадцатичленное потомство.
Культуру туфельки Paramecium caudatum удавалось выращивать в течение 13 лет. После деления материнской клетки на две дочерние последние выращивали отдельно. Туфельки делятся раз в сутки. За 40 дней все потомство одной клетки заняло бы пространство в 1 м3, а за семь лет масса этих микроорганизмов весила бы уже в 10 000 раз больше, чем земной шар. Естественно, что в природе столь бурное размножение микробов невозможно.
Ультратонкий срез прорастающей споры Рenicillium megasporum. Видны различные структуры клетки, ядро, митохондрии, капельки жира, клеточная стенка.
Такая высокая способность к размножению ограничена в природе многими факторами. Известно, что слон — животное с очень низкой репродуктивной способностью, но если бы все слонята доживали до взрослого состояния, популяция слонов за неполных 50 лет возросла бы вдвое. Пара слонов, живших 100 000 лет назад, в настоящее время имела бы потомство с астрономическим числом индивидов, выражающимся цифрой 4 с 602 нулями!
Однако вернемся к царству микроорганизмов. Дрожжи размножаются значительно медленнее бактерий. Время генерации у них длится от двух до четырех часов. Так же медленно размножаются и многие микроскопические грибы. Их гифы растут в длину за счет образования все новых и новых клеток. Нити гиф, кроме того, разветвляются и при благоприятных условиях образуют репродуктивные органы, которые производят споры. В подходящей обстановке спора прорастает, из нее появляется новая гифа, и весь процесс повторяется снова.
В уже упоминавшейся Лаборатории электронной микроскопии Высшей федеральной технической школы в Цюрихе наблюдали процесс прорастания конидий микроскопического гриба Penicillium megasporum. На ультратонких срезах прорастающих конидий были обнаружены большие изменения. В них увеличилось количество митохондрий, являющихся продуцентами энергии, стенки конидий лопнули, и в этом месте образовались проростки с многослойными стенками. Митохондрии и ядро сместились к растущему проростку и будущей гифе. Это изображено на прилагаемом рисунке.
Рост и размножение можно наблюдать не только в лаборатории, но и в природе. Подвижные споры водного микроскопического гриба Oovorus copepodarum после отделения их от материнской клетки плавают в воде 5–6 мин, затем закрепляются на яйцах веслоногих рачков, на которых они паразитируют, и в течение дальнейших 5 мин проникают внутрь яиц. В них они быстро делятся, и уже через 15 мин гриб, выросший внутри яйца, образует новые споры. Таким образом, каждые 30 мин возникает новое поколение этого гриба.
Американский миколог Эмерсон с сотрудниками, выращивая водные микроскопические грибы, изучал их рост и размножение. Подвижные споры (зооспоры) этих грибов образуются в органах, называемых зооспорангиями.
В Канаде, в университете Ватерлоо, ученые Кендрик и Коле наблюдали возникновение спор у растущего на суше гриба Trichothecium roseum. Этот гриб образует скопление конидий на общем конидиеносце. Через определенные интервалы ученые фотографировали этот процесс под микроскопом. В течение 12 ч число спор на одном конидиеносце возросло в 3 раза (фото 30).
Итак, мы видели, что определение жизни, данное К. Бернаром, вполне применимо к миру микробов. Микробы растут и размножаются. Рост и размножение макроорганизмов относительно легко наблюдать и изучать. Так например, размножение культурных растений можно определять, подсчитывая их урожай, а размножение животных — подсчитывая их потомство. Прирост или уменьшение населения в определенной области устанавливается периодическим подсчетом жителей. В более мелком масштабе можно проследить изменения в росте или весе отдельных лиц и изобразить это графически.
Как же наблюдать с достоверностью рост и размножение микроорганизмов? Как подсчитывать мельчайшие клетки бактерий или дрожжевых грибов? Этим вопросом занимался Ж. Моно из Пастеровского института в Париже в период, казалось бы, наименее благоприятный для подобных исследований, — в первые два года второй мировой войны. Свои наблюдения и заметки он опубликовал в книге «Исследование роста бактерий», вышедшей в 1942 году. Книга Ж. Моно и его методы стали классическим достоянием современной микробиологии. Размножение бактерий ученый графически изобразил при помощи «кривой роста», показывающей изменение численности бактерий за определенное время.
Для своего времени Моно был очень точен в оценке роста бактериальных культур. Он уже имел опыт ряда предшественников, внесших свой вклад в изучение размножения микробов. Некоторые из них использовали и понятие «кривая роста», а Лэйн-Клейпон установила четыре последовательные фазы роста бактерий.
Согласно Моно, размножение популяции бактерий происходит следующим образом. При посеве бактерий на свежую питательную среду они приспосабливаются к новым условиям и первое время не размножаются; этот период принято называть лаг-фазой. После него следует фаза быстрого размножения с логарифмической зависимостью числа клеток от времени выращивания, что выражается экспоненциальной кривой. В связи с этим описанная часть кривой роста называется логарифмической фазой, или лог-фазой. Постепенно, однако, питательные вещества из раствора исчезают, а среда обогащается продуктами выделения бактерий, часто тормозящими процесс размножения. Бактерии вступают в стационарную фазу. Затем они начинают отмирать и распадаться, и кривая роста входит в фазу отмирания.
Подобные кривые роста могут быть построены и при изучении размножения других микроорганизмов. В процессе наблюдения можно отмечать и изменение диаметра растущих колоний. На фото 31 и 32 мы видим растущие колонии дрожжей. Клетки почкуются, и колония постепенно растет. Среди примеров различных кривых роста мы приводим кривую роста опухолевых клеток человека HeLa, выращиваемых в питательном растворе. Она заимствована из опытов автора, исследовавшего действие антибиотиков на клетки HeLa в лаборатории профессора Г. Гарриса в Оксфордском университете.
Кривые роста, а — бактерии Escherichia coli, число которых в течение часа увеличилось втрое; б — дрожжи Saccharomyces cerevisiae с менее интенсивным размножением; в — микроскопические грибы: Aspergillus (1), Coccidioides (2), Trichosporon (3), Paecilomyces (4); г — опухолевые клетки человека, выращенные на искусственной среде; д — вес детей автора в первые недели их жизни; е — прирост населения США начиная с 1700 года; ж — прирост населения нашей планеты за последние 2000 лет.
Кривая роста бактерий. Л — лаг-фаза; Б — лог-фаза; В — стационарная фаза; Г — фаза отмирания.
Заслуги Ж. Моно в развитии микробиологии не ограничились только изучением кривых роста. Позднее он был удостоен Нобелевской премии в области физиологии и медицины, о чем еще будет рассказано в одном из дальнейших разделов.
Кривые роста — не только количественные показатели. Результаты исследований последних лет показали, что в отдельные фазы кривой роста происходят существенные качественные изменения внутри клеток, в их ферментативной активности, в образовании различных соединений или телец, обеспечивающих в дальнейшем рост и размножение микроорганизмов.
Мы познакомились с огромной потенциальной возможностью размножения микробов. Но мы узнали также и о том, что оно встречает существенные преграды. Более того, на кривой роста Моно мы нашли заключительную фазу, свидетельствующую о гибели микробов. А что мы знаем об основных причинах их смерти?
Как показали наши вычисления, размножение микробов не безгранично. Это значит, что некоторые из клеток гибнут, так и не дожив до деления. Чаще всего причиной их гибели бывают неблагоприятные внешние условия (недостаток питательных веществ, накопление в среде вредных для микроорганизмов продуктов жизнедеятельности и т. д.).
Гибель бактерий можно наблюдать при их выращивании в жидкой питательной среде. Вскоре после посева количество клеток начинает постепенно возрастать и так продолжается вплоть до достижения известной предельной концентрации в среде. С этого момента процесс размножения начинает замедляться и некоторые клетки перестают делиться. И не только делиться. Бактерии просто исчезают, их клетки гибнут и распадаются. Количество живых клеток резко уменьшается. Какова же причина их смерти? Из неживых соединений питательной среды клетки бактерий создали живое вещество. Число их постоянно увеличивалось, а запас питательных веществ соответственно сокращался, и для миллионов образовавшихся клеток не стало хватать пищи. Бактерии начали голодать, и очень скоро наступила их смерть.
Кроме того, в процессе жизнедеятельности микробы выделяют в окружающую среду продукты, количество которых с возрастанием числа клеток все увеличивается. Наконец их скапливается такое множество, что они начинают оказывать вредное влияние на выделившие их клетки, ослабляют их и, таким образом, ускоряют гибель.
Но микробов подстерегает в природе и насильственная смерть. Их может убить солнечный свет, в воде они становятся жертвой мелких водных животных. Наконец, многие микроорганизмы враждуют между собой, и борьба за жизнь часто бывает одной из причин их гибели. Но самым опасным для них врагом стал человек. Он узнал, что их могут погубить высокие температуры, и ввел различные методы стерилизации, создал активные химические вещества, способные умерщвлять миллионы микробов, и многими другими средствами научился создавать невозможные для их жизни и развития условия там, где присутствие микробов для него нежелательно.
Жизнь и размножение микробов зависят от многих внешних факторов. К основным относится прежде всего температура окружающей среды. Самая низкая из известных нам температур, при которой прекращается тепловое движение молекул и атомов, — это —273 °C (так называемый абсолютный нуль). Теоретически эта температура является пределом жизни и для микробов, хотя у многих из них жизненные процессы прекращаются уже при температуре ниже 0 °C, которая, однако, их не убивает. Некоторые болезнетворные микроорганизмы сохраняли жизнеспособность в течение нескольких дней при —190 °C. Не вызывала их гибели и температура —250 °C, при которой газообразный водород переходит в жидкое состояние. Выдерживали бактерии в течение нескольких часов и охлаждение до —270 °C!
Где же находится верхний температурный предел жизни микробов? Обычно бактерии погибают при длительном нагревании до точки кипения воды. Впрочем, нам известны и случаи более высокой устойчивости. Это касается прежде всего спор бацилл. В обиходе бациллами часто называют вообще все микроорганизмы. На языке же специалистов этот термин относится только к бактериям, способным в определенных условиях образовывать в своих клетках споры. Их споры обычно значительно более устойчивы к неблагоприятным, в частности температурным, факторам внешней среды, чем организм самих бацилл.
Бактерии, не способные к образованию спор, выдерживают кратковременное нагревание до 100 °C, тогда как споры бацилл выносят и значительно более суровое испытание. Так, споры Bacillus stearothermophilus выживают при пятиминутном действии пара, нагретого до 121 °C. Споры возбудителя сибирской язвы (В. anthracis) способны выдерживать полминуты температуру 400 °C, которая и является до сих пор наивысшим пределом жизни микроорганизмов. Следовательно, амплитуда температур, при которой возможна жизнь микробов, равна 670° (от —270 до + 400 °C). Чаще всего эти границы значительно уже: за нижнюю можно принять 0 °C, за верхнюю 90 °C. В этих пределах в основном и проходит жизнь микроорганизмов, причем скорость их роста и другие проявления жизни находятся в тесной зависимости от температуры.
Все микроорганизмы по их отношению к температуре делят на три основные группы: психрофильные (холодолюбивые), мезофильные (предпочитающие средние температуры) и термофильные (теплолюбивые). Термофильные микроорганизмы живут в горячих источниках и выдерживают «ванну» с температурой 70–80 °C. Иные существуют в преющем сене. Впервые термофильная бактерия была обнаружена в конце 80-х годов прошлого столетия французским ученым Микелем из города Сен. Культура этой бактерии росла при 73 °C. Вышеупомянутый Bacillus stearothermophilus — опасная угроза для пищевой промышленности, так как к высоким температурам устойчивы не только его споры, но и вегетативные клетки, которые могут расти при 80 и даже 85 °C. К мезофильным микроорганизмам относятся почти все патогенные и большая часть сапрофитных микробов. К ним же принадлежит и большинство микроорганизмов, имеющих промышленное значение. Из группы психрофильных микробов можно назвать микроскопические водоросли, которые живут на снегу и окрашивают его в кроваво-красный цвет.
Из рассказа о фотосинтезе мы уже знаем, что жизнь зеленых растений зависит от Солнца, дающего им энергию. Но большая часть бактерий иначе реагирует на солнечный свет. Прямые лучи солнца для них губительны.
Очень показательный пример вредного влияния света на патогенные микробы привел немецкий врач и философ Людвиг Бюхнер. На питательную среду в чашке Петри он посеял культуру Salmonella typhi, возбудителя брюшного тифа. На крышку чашки он приклеил надпись крупными черными буквами «ТИФ» и выставил затем чашку на солнечный свет. По прошествии часа он поместил ее в темный термостат, где продержал 24 ч. На следующий день культура была уже хорошо видна невооруженным глазом, но росла она только на тех местах, которые были прикрыты от солнечного света черными буквами, и на поверхности среды возникла такая же надпись.
Еще из курса физики мы помним, что белый дневной свет при прохождении через стеклянную призму разлагается на составные части — от фиолетового до красного. Наиболее губительной для бактерий оказалась ультрафиолетовая часть спектра. На этом основывается и применение ультрафиолетовых лучей для уничтожения бактерий.
Но существуют бактерии, которые для своей нормальной жизнедеятельности требуют света, например пурпурные серобактерии, обладающие способностью к фотосинтезу. Нужен свет и водорослям, а из простейших — зеленым жгутиковым. Лучше развиваются при свете и некоторые грибы.
На конском навозе вырастает микроскопический гриб Pilobolus, которому свет необходим для образования спор. В природных условиях этот гриб ежедневно создает группу спорангиеносцев со спорангиями. Спорангиеносцы формируются с полудня и вплоть до вечера.
Дальнейшее развитие и образование спорангиев происходит в ночное время. К утру спорангии уже бывают сформированы. Черный спорангий, в котором образуются споры, похож на маленькую черную шапочку, сидящую на слегка вздутом спорангиеносце и обращенную к солнцу. К полудню в находящемся под спорангием пузырьке возникает высокое давление, и он лопается прямо под спорангием, выбрасывая его в направлении источника света на расстояние до двух с половиной метров. Спорангий обычно приклеивается к траве и вместе с ней попадает в желудочный тракт травоядных животных. Там спорангий открывается, и высыпавшиеся из него споры вместе с навозом выходят наружу.
Итак, мы уже узнали, что микробы выносят значительные колебания температуры, гораздо большие, чем человек. Посмотрим же, как реагируют они на другие неблагоприятные условия.
Давление воздуха на уровне моря и на 45° географической широты равно 1 атм. С увеличением высоты это давление снижается. Человек, для которого нижней границей давления принято считать 0,4 атм, очень чувствителен к понижению давления и уже на высоте 3000 м часто заболевает «горной болезнью».
Каковы же в этом отношении свойства микроорганизмов? Установлено, что некоторые виды микроскопических грибов растут и продуцируют споры при давлении всего 5 мм ртутного столба, что соответствует приблизительно 0,006 атм![7]
Нетренированный человек может выдержать повышение давления до 4 атм, водолазы — до 8. Более высокое давление уже опасно для жизни человека. Микроорганизмы, извлеченные со дна океанов, с глубины 10 000 м, где давление достигает 1000 атм, наблюдали при более низких давлениях. Оказалось, что эти условия для них неблагоприятны, их жизненные процессы значительно замедлялись. Ио давление 1000 атм еще не представляет опасности для их жизни. Клетки дрожжей выживали при давлении 8000 атм, а споры одной бациллы выдержали в течение 45 мин давление 20 000 атм.
Проделаем опыт: заполним стеклянную трубку раствором медного купороса и закроем ее на нижнем конце полупроницаемой пергаментной бумагой. Перенесем трубку в сосуд с чистой дистиллированной водой и отметим уровень раствора медного купороса. Через пергаментную бумагу хорошо проходят молекулы воды, но молекулы медного купороса пройти не могут. И действительно, очень скоро мы заметим, что уровень раствора в трубке начинает повышаться, а раствор разбавляться водой, проникшей в трубку из сосуда.
Но уровень раствора повысится лишь до известного предела. Если бы мы добавили в трубку еще кристаллик купороса, уровень снова стал бы повышаться, но тоже только до определенной высоты. Вода из сосуда, как видим, может проникнуть в трубку лишь до известной границы, высота которой зависит от количества растворенного в воде вещества, или его концентрации. Просачивание воды через полупроницаемую перегородку в раствор медного купороса — частный случай явления, называемого осмосом. Для проникновения воды необходимо определенное давление, которое называется осмотическим, а измеряется обычно числом атмосфер, как и давление воздуха или воды.
Направление движения воды может измениться, если мы в сосуд положим такое количество медного купороса, чтобы его концентрация превышала концентрацию раствора в трубке. Тогда уровень жидкости в трубке начнет падать, так как молекулы воды будут двигаться через полупроницаемую пленку в направлении раствора с большей концентрацией медного купороса. В тот момент, когда концентрации растворов по обе стороны пленки выровняются, движение воды прекратится.
Цитоплазматическая мембрана, окружающая внутреннее содержимое микробной клетки, также полупроницаема. Это означает, что она свободно пропускает молекулы воды, но чрезвычайно медленно — все прочие вещества. Содержащиеся в клетке минеральные соли и сахара также растворены в воде. Что же произойдет, если клетку поместить в дистиллированную воду? Возникнет положение, подобно тому, которое было в опыте с трубкой, наполненной раствором купороса и опущенной в сосуд с дистиллированной водой. По одну сторону полупроницаемой цитоплазматической мембраны находится чистая вода, по другую — раствор веществ определенной концентрации. Неизбежно возникнет тенденция выравнивания концентраций, и молекулы воды станут проникать внутрь клетки, расширяя ее объем и увеличивая внутриклеточное давление. Наконец цитоплазматическая мембрана, не выдержав нарастающего давления, разрывается и все содержимое клетки выливается в окружающую жидкость.
Иное положение будет, если клетка микроба попадет в раствор поваренной соли или сахара, имеющий более высокое осмотическое давление, чем цитоплазма клеток. В данном случае выравнивание концентраций будет происходить за счет передвижения молекул воды в обратном направлении— из клетки в окружающий ее раствор. Под микроскопом можно увидеть, как клетка начинает сморщиваться, ее внутреннее содержимое отделяется от стенок и концентрируется в центре.
Из всего вышесказанного ясно, что микробы «чувствуют себя хорошо» лишь в растворах, имеющих приблизительно такое же осмотическое давление, что и в их клетках.
Микроорганизмы обычно способны выдерживать давление 5 и даже 10 атм. Осмотическое давление среды зависит от концентрации растворенных в ней веществ.
Таким образом, богатая солями морская вода имеет значительно более высокое осмотическое давление, чем пресная речная вода. Но микробы живут и в морях. Концентрация солей в морской воде около 3,5 %, что соответствует осмотическому давлению в несколько десятков атмосфер. Живут микроорганизмы и в Мертвом море, вода которого содержит 25 % солей, и в Большом Соленом озере с 27,6 % солей. В соляных копях на поверхности влажной соли живут одноклеточные водоросли.
Другой фактор, сильно влияющий на жизнь микроорганизмов, — так называемая «реакция» (рН) среды. Это свойство зависит от химического состава содержащихся в ней веществ. Кислоты определяют кислый характер среды, основания— щелочной. Наиболее удобной мерой реакции является шкала величин рН — от нуля до 14. При величине рН, равной 7, среду характеризуют как нейтральную, если она ниже 7, ее считают кислой, а если выше — щелочной.
Для большинства бактерий наиболее благоприятна слабо щелочная или нейтральная реакция среды; дрожжи и микроскопические грибы хорошо выносят кислую среду. Кислотоустойчивые бактерии, к которым можно отнести возбудителя туберкулеза, выдерживают очень кислые среды.
В наш атомный век не может не возникнуть еще один вопрос: как влияет на микробы радиоактивность или рентгеновское излучение? Мы знаем, что для животных и растений такие излучения при длительном их воздействии опасны. Микробы также оказались чувствительными к этим влияниям[8]. При облучении большая часть клеток погибает, а у оставшихся в живых обычно несколько изменяются свойства, причем эти изменения переносятся и на их потомство. Такие внезапные изменения наследственных свойств называются мутациями.
Л. Пастер, Избранные груды, Изд-во АН СССР, М., 1960, т. II, стр. 144. — Прим. ред.
Слово «лаборатория» происходит от латинского laborare — работать. — Прим. перев.
Лиофилизация — высушивание клеток микроорганизмов при замораживании с целью их длительного хранения. — Прим. ред.
Наивысшая горная вершина в хребте Татры (Чехословакия) высотой 2655 м. — Прим. перев.
Протопластом называют протоплазму, ограниченную цитоплазматической мембраной. Сферопласты отличаются от протопластов тем, что они, помимо цитоплазматической мембраны, несут на себе остатки клеточной стенки. — Прим. ред.
Международной биохимической комиссией по терминологии недавно был принят сокращенный химический символ для дезоксирибонуклеиновой кислоты DNA, для рибонуклеиновой — RNA (на основе английских терминов). Из чисто практических соображений мы оставляем прежние символы (ДНК и РНК).
Советские ученые установили, что некоторые микроорганизмы не теряют своей жизнеспособности после семидесятидвухчасового пребывания в вакууме 10-8—10-10 мм. рт. ст. (А. А. Имшенецкий, С. В. Лысенко, в сб. «Жизнь вне Земли и методы ее обнаружения», М., изд-во «Наука», 1970). — Прим. ред.
Наибольшим бактерицидным действием обладают ультрафиолетовые лучи с длиной волны 2537 А» Однако, если организм покрыт защитной пленкой (например, пленкой хрома толщиной 800 А), то после воздействия дозы, равной 7,8х107 эрг/см2, споры микробов остаются жизнеспособными (Р. И. Федорова, в сб. «Жизнь вне Земли и методы ее обнаружения», М., изд-во «Наука», 1970). — Прим. ред.