81466.fb2 Вероятностный мир - читать онлайн бесплатно полную версию книги . Страница 29

Вероятностный мир - читать онлайн бесплатно полную версию книги . Страница 29

Меня устроили в светлом кабинете наверху. Его вре менный обитатель — теоретик из Польши — уехал в отпуск. Не знаю темы его занятий, но на открытом стеллаже у стены среди журналов и препринтов лежала английская книга по кристаллохимии. А на верхней полке — два коричневых тома, показавшихся мне знакомыми со стародавних студенческих лет. Полез удостовериться и увидел знаменитые «Основы химии» Менделеева — 8–е издание 30–х годов. Это было удивительно в Копенгагене 70–х, да еще в институте теоретической физики Бора.

Все это вместе: немецкий историк и польский теоретик, 30–е годы в гостях у 70–х, великий русский химик в гостях у великого датского физика, классика одной науки в гостях у антиклассики другой, XIX век в XX, — все это вместе вдруг показалось мне живым и наглядным воплощением связи времен, связи народов, связи культур. Воплощение было нечаянным и случайным — одним из миллионов возможных и действительных, но потому–то особенно убедительным в своей непреднамеренности и естественной простоте.

Этими связями живо человеческое познание.

Недавно, перебирая свои копенгагенские заметочки для памяти, я наткнулся на запись: «Взять из Предисловия к 8–му изд. «О. X.» Менделеева, стр. XXIII…» Вспомнилось, как однажды под вечер, устав от нелегких иноязычных текстов, я решил ублажить себя чтением по–русски и достал со стеллажа Менделеева. Тогда и сделал эту повелительную запись «взять». Но что же именно?.. Пришлось заново посмотреть. И вот что бросилось в глаза:

«Сперва науки, как и мосты, умели строить лишь при опорах из прочных устоев и длинных балок. Мне желательно было показать… что науки давно уже умеют, как висячие мосты, строить, опираясь на совокупность хорошо укрепленных тонких нитей, каждую из которых легко разорвать, общую же связь очень трудно, и этим способом стало возможным перебрасывать пути через пропасти, казавшиеся непроходимыми. На дно не опираясь, и в науках научились пересягать пропасти неизвестного, достигать твердых берегов действительности и охватывать весь видимый мир…»

Подумалось: да ведь это провидчески написано прямо про нашу хорошую историю — про возведение квантового моста между микро–и макромирами!

Уязвимые тонкие нити… И нерасторжимая общая связь…

А еще подумалось, что это приложимо и к свершениям тех десятилетий, которые последовали за эпохой бури и натиска, когда квантовая физика, достигнув твердых берегов действительности, стала и впрямь постепенно охватывать весь видимый мир. И при мысли об этом возникло острейшее сожаление, что тут архив замолкает. Время в нем не кажется остановившимся, а вправду остановилось.

Это не в упрек его собирателям: они–то свою программу осуществили на удивление полно. Но нашему ненасытному и такому оправданному интересу к жизни замечательных идей хочется продолжения программы — ее расширения за пределы первой революционной поры. Хочется собрания документальных источников ко всей истории квантовой физики — вплоть до наших дней. И прежде всего — свидетельских рассказов самих ученых.

Легко сказать! Да как представить себе такой необъятный архив? Как его собирать? Не похоже ли это на попытку вычерпать море?

В 20–х годах у Резерфорда в Кавендишской лаборатории работало три десятка сотрудников. Тогда же Бор на чинал работу в своем копенгагенском институте со штатом в семь человек. У Эйнштейна только в конце 20–х годов появилась наконец секретарша… Недаром же лишь около ста ветеранов квантовой революции сумели разыскать историки во всех концах земли, чтобы вызнать у них, «как дело было». А участников всего, что свершила квантовая физика потом, и всего, что создает она сегодня, уже не сотни, а легион. Сколько прозрений и заблуждений, надежд и разочарований, побед и драм… Сколько характеров и судеб!

Охватывая шаг за шагом весь видимый мир, квантовая физика ветвилась и ветвится на множество, хоть и связанных, но раздельных дисциплин. От квантовой теории полей (ровесницы самой квантовой механики) до квантовой теории процессов сознания (новейшего увлечения отважных теоретиков). И у каждой ветви раскидистого древа — своя история роста. Так хорошо бы и свой будущий архив первоисточников!

По нынешним временам это, наверное, единственно реальный путь собирания живых свидетельств и еще не утраченных исторических документов: ветвление хранилищ. И едва ли уже мыслимы архивы мирового масштаба. Надежней создание архивов национальных.

6

Вот мощная ветвь квантового познания микромира: изучение элементарных частиц…

Год 1932–й, условно признанный замыкающим эпоху бури и натиска, был назван физиками «годом чудес». Он удостоился этой чести прежде всего потому, что к трем уже известным элементарным частицам — электрону, протону, фотону — в том году прибавились сразу две новые: Джеймсу Чэдвику открылся предсказанный Резерфордом нейтрон — первая атомная частица без электрического заряда, а Карлу Андерсону открылся предсказанный Дираком позитрон — первая античастица, во всем копирующая электрон, но заряженная положительно.

5 частиц — весь улов трех с половиной десятилетий. А еще через три десятилетия с лишним «Физический словарь» смог сообщить: «К 1965 г. общее число элементарных частиц заметно превысило 100»!

В научной публицистике появился расхожий образ рога изобилия, из которого посыпались «первоосновы материи». Так стали говорить об этом сами физики, с изумлением оглядывая свое нарастающее богатство: никогда прежде они на него не рассчитывали…

Сначала — два, затем — четыре, а потом и шесть сор тов нейтрино. Два мю–мезона. Три пи–мезона. Четыре К–мезона. Семья нуклонов и целые выводки частиц тяжелее ядерных — дельта–резонансов. Лямбда–гипероны, сигма–гипероны, кси–гипероны. А там и сообщества еще более тяжелых частиц — ипсилон и пси… Разные массы. Разные времена жизни. Разные наборы квантовых характеристик — таких, как издавна знакомый спин и раннее неведомые странность и очарование. Разные роли в основных физических взаимодействиях… А потом еще нежданные–негаданные кварки с дробными электрическими зарядами… И вот в 1978 году энциклопедический том уже оповещает, что число элементарных частиц перевалило за 350!

В самом деле может почудиться, будто некий рог изобилия с легкостью одаривает физиков небывалыми щедротами. Но символического рога нет, а легкость — иллюзия. Как правило, открытие каждой новой частицы — это научный подвиг, сперва — теоретический, потом — экспериментальный. (Хотя заведомо ясно, что не каждая из них — истинно элементарна, а часто лишь представляется элементарной до поры до времени.)

Вспоминается одно из таких открытий.

Оно было сделано весной 1960 года нашими физиками в Дубне. Они показали существование антисигма–минус–гиперона, предсказанного в 50–х годах. Он, этот гиперон, как и все его собратья, нестабилен: время его жизни — от рождения до распада — десятимиллиардные доли секунды (10–10).

Однако, пронизывая камеру–детектор с околосветовой скоростью, он успевает оставить за собою заметный след. И физики умудряются этот след сфотографировать вместе со следами тех частиц, в которые он превращается, распадаясь. А в камере происходят одновременно десятки других микрособытий. Они тоже регистрируются фотопленкой, маскируя искомый редчайший след. Компьютеры тогда еще не помогали физикам в таких исканиях. Дубенским экспериментаторам пришлось самим обследовать 40 000 кадров научной киносъемки, пока на одном из них они не обнаружили желанного гостя и не убедились после кропотливых обсчетов, что их действительно посетил антисигма–минус–гиперон.

Первым почувствовал, что он видит искомое, молодой физик Анатолий Кузнецов. Это его собственное признание — «почувствовал»! Мне случилось тогда написать об этом: для повествования в книге «Неизбежность странного мира» важна была такая психологическая деталь. А всей истории того открытия я не касался. И потому получилось, что приписал одному ученому то, что совершено было целым коллективом.

Потом пришло письмо от Анатолия Кузнецова. Он писал, что мог бы рассказать «много интересного о своих товарищах по работе, которые столько сделали для этого открытия». И перечислил десять своих соавторов да двух учителей, коротко помянув преодоленные трудности.

А когда через три года американские физики искали предсказанный теоретиками Геллманном и Нееманом омега–минус–гиперон, им пришлось изучить следы на 100 000 кинокадрах!

Но не в этих числах со многими нулями существенная новизна. На заре эпохи бури и натиска Марии и Пьеру Кюри понадобилось сделать 10 000 перекристаллизаций, чтобы выделить первые крупицы радия. А резерфордовцам Гейгеру и Марсдену потребовалось пересчитать 1 000 000 сцинтилляций — вспышек на экране от рассеянных на разные углы альфа–частиц, чтобы апробировать идею атомного ядра… Новизна в другом.

Атомы радия и атомные ядра — создания самой природы. А физика элементарных частиц, раскрывая квантовые возможности природы, научилась «собственноручно» создавать объекты своего изучения. Вот этого в эпоху бури и натиска физики делать еще не умели. Да им это было тогда без нужды.

В принципе дело просто… Неотменимо действует эйнштейновский закон эквивалентности энергии и массы — знаменитая формула Е = тс2. Она допускает как бы овеществление энергии в подходящих условиях. Решающее условие очевидно: нужна колоссальная энергия, дабы возникла «вещь» хотя бы ничтожной массы. И обнаружилось: при столкновении высокоэнергичных частиц с другими таинственный механизм приводит к рождению новых частиц. Это постоянно происходит в космических лучах. Но поток их редок и неуправляем. Физики стали снабжать частицы высокой энергией на мощных ускорителях.

Когда в 1955 году американские физики во главе с Э. Сегрэ и О. Чемберленом открывали антипротон, они сумели создать его в Беркли, благодаря ускорителю на 6 миллиардов электронвольт. Для рождения антипротона с его массой водородного ядра такой энергии более чем хватало. Однако для «производства» более тяжелых гиперонов и антигиперонов лучше было владеть источником еще большей энергии. И когда в 1960 году наши исследователи во главе с академиком Владимиром Векслером открывали антисигма–минус–гиперон, подмосковная Дубна была единственным местом на земле, где физики таким источником владели: там уже три года работал крупнейший по тем временам ускоритель — синхрофазотрон на 10 миллиардов электронвольт.

Так история открытия самого малого в природе — элементарных частиц — естественно переплелась с историей конструирования самого большого в лабораторной технике нашего века — гигантских ускорителей. А помог им стать гигантскими прежде всего Владимир Векслер.

Еще во время войны, в 1944 году, он первым — до Эдвина Макмиллана — нашел революционизирующий принцип ускорения (названный «принципом автофазировки»). Это позволило в тысячи раз увеличить энергию разгоняемых частиц: раньше счет шел на миллионы, а теперь пошел на миллиарды электронвольт! Детище Векслера — ускоритель в Дубне — долгие годы первенствовал в семье ускорителей, пока его не обогнали синхрофазотроны в Женеве, в Серпухове, в Батавии… Начальные годы этого первенства и принесли векслеровским ученикам, среди них — Анатолию Кузнецову, тот незаурядный успех.

И вот что еще. Рассказывая об открытии антисигмы, Кузнецов особо отметил заслугу М. И. Соловьева: создание «прибора, без которого невозможно было бы получить фотографию нашей частицы». Речь зашла об этом неспроста.

То был дубенский вариант изобретенной в 50–х годах быстродействующей камеры для съемки треков заряженных частиц — не прежней камеры Чарльза Вильсона, где частица оставляет след из капелек тумана, а новой камеры Дональда Глейзера, где похожий след прочерчивается пузырьками пара. Прибор был чувствительный, сложный, оснащенный едва ли не всей доступной в те дни автоматикой. Словом, дубенцы экспериментировали на уровне века. Иначе ничего бы не вышло.

А когда за пять лет до того американцы искали антипротон, им неоценимую помощь оказал еще и другой современный прибор, который тоже незнаком был экспериментаторам эпохи бури и натиска: черенковский счетчик. В этом тонком устройстве пролетающая частица сообщает о себе и о важных своих параметрах, испуская излучение Вавилова — Черенкова, открытое в 1934 году.

Академику Сергею Вавилову принадлежала направляющая догадка, а его ученику, тоже будущему академику, Павлу Черенкову — мастерские наблюдения. Голубое свечение жидкости под действием потока гамма–квантов обладало такими интересными свойствами, что строго истолковать его можно было только на совсем особый лад: энергичные кванты при встрече с атомными электронами придают им сверхсветовую скорость, и вот эти–то сверхбыстрые электроны оставляют за собою, как шлейф, голубое свечение.

Сверхсветовая скорость? Да ведь она невозможна! Конечно. Но с маленьким уточнением: свет нельзя обогнать в пустоте, а сквозь вещество — сквозь жидкость или газ — он сам движется медленнее, чем в вакууме, и превысить ту его скорость законы природы не запрещают. Теорию излучения Вавилова — Черенкова детально разработали в 1937 году будущие академики Игорь Тамм и Илья Франк. Через двадцать с лишним лет, в 1958 году, они вместе с Павлом Черенковым были удостоены Нобелевской премии (к тому времени С. И. Вавилова уже не было в живых, а эти премии посмертно не присуждаются) .

На торжественной церемонии в Стокгольме профессор К. Зигбан, представляя наших лауреатов, объяснил: «Открытие Черенкова, Франка и Тамма нашло в последние годы приложение решающей важности в исследовании структурных основ и природы материи…» Да, незаменимая помощь в распознании антипротона стояла уже тогда в длинном ряду добрых услуг, какие оказал экспериментаторам эффект Вавилова — Черенкова.

Суть происходящего в черенковском счетчике легко уловить: надежно регистрируя по их свечению уникально скоростные частицы, он выделяет их из числа всех остальных, более медленных. Оттого–то в опытах на могучих ускорителях без этого прибора трудно обойтись. И не удивительно, что черенковские счетчики работают ныне не только на земле, а путешествуют еще и на спутниках — в космических лабораториях. Они передают ученым нужные сведения о свойствах микротелец, ускоряемых и рождающихся не в институтах Дубны и Беркли, Серпухова и Женевы, а во Вселенной. Там разгоняет их самый грандиозный ускоритель из возможных — галактические силовые поля…

Так лабораторный инструментарий квантовой физики служит сегодня своими новшествами и физике космоса.

7

…Дубенский антисигма–минус–гиперон. В духе менделеевского размышления о науке можно бы сказать: это — всего лишь одна из хорошо укрепленных нитей, переброшенных через пропасти, казавшиеся непроходимыми. Всего одна. Но стоит ухватиться за эту нить, и вот как много за нею тянется! Всего лишь одна глава из истории открытия элементарных частиц. Да нет, и того меньше: лишь подглавка с беглым рассказом о двух чертах в экспериментальной картине события. А сколько усилий исследователей разных поколений и разной известности! Сколько исканий, растянутых на десятилетия! И как отчетливо выявляется громадный вклад наших физиков в историю раскрытия «первооснов материи»!

Когда–нибудь эта история, разумеется, будет написана. Но разве не пора собирать для нее документальные материалы уже теперь? И среди них — переписку и живые свидетельства ветеранов. Этого никогда не заменят ни лабораторные дневники, ни протоколы ученых советов, ни институтские отчеты. Наука, как эйнштейновская «драма идей», доподлинно оживает в перекрестных голосах ветеранов. А ветераны уходят. Историкам уже ни о чем не расспросить ни Вавилова, ни Векслера, ни Тамма… Помните, как историки эпохи бури и натиска не смогли ни о чем расспросить ни Эйнштейна, ни Паули, ни Шредингера… Безучастную поступь времени ничем не задобрить.

Хорошо бы историкам, в согласии со старым девизом, торопиться делать добрые дела. И это справедливо не только по отношению к эпопее открытия элементарных частиц — любая ветвь квантовой физики, да и любая ветвь естествознания, взывает о том же.

…Вот о чем невольно думалось в стенах копенгагенского архива.

А чем же закончить нашу хорошую историю, на самом деле не имеющую конца?

Пожалуй, лучше всего — той же поразительной мыслью Менделеева о науках, сумевших «на дно не опираясь, достигать твердых берегов действительности и охватывать весь видимый мир». Да, конечно, квантовая физика, уводящая воображение человека в глубины материи, никогда не могла «опираться на дно»: она тем и занята, что сама его ищет. И будет искать всегда.

Каждая новая ступень на графике ее роста — это всякий раз временная иллюзия достигнутого дна. Как заметил однажды насмешливо мудрый Ежи Лец: «Ступив на самое дно, он услышал, как снизу стучат!»

Глубины природы, очевидно, бездонны. Придет время, — возможно, оно уже близко, — когда и квантовая механика, как в недавнем прошлом классическая, Дойдет до границ своей применимости. Для этого нужно, чтобы исследование микромира углубилось до прежде неведомого уровня физической реальности и проникло в него. Кажется, физики уже слышат, что «снизу стучат»… Во всяком случае они прислушиваются… Так, есть идеи–намеки, что в ультрамалом, куда еще не добрался эксперимент, скажут свое, быть может, законодательное, слово неизбежные изменения геометрических свойств пространства–времени. Последствия этого могут оказаться для описания природы вновь революционными.

Одно несомненно: в ультрамикромире нас будут ждать не старые радости возвращенной классики, а новые неслыханные удивления. И новые великие огорчения, из которых вырастет радость нового непредвиденного знания.