81466.fb2
Интересно, почему восьмидесятилетний Дж. Дж., публикуя в 1936 году книгу «Воспоминания и размышления», не захотел сказать читателям, кто был тем выдающимся физиком, который воспринял весть об электроне, как морочение головы? Может быть, Томсон решил оберечь его имя от наших сегодняшних просвещенных улыбок?
Вернее всего, то была доброта старости, которая и для себя ищет ответной доброты. Переживший все свое поколение, старый Томсон в ней нуждался. С годами он превратился, по выражению Резерфорда, в «кембриджскую окаменелость», ибо в свой черед воспринял как мороку новые физические идеи, прежде всего квантовые. «Он поставил себя вне физики», как сказал позднее историкам Нильс Бор. Не рассчитывая на снисхождение молодых, постаревший Дж. Дж. и жизнь–то повел как бы вне жизни: некогда общительный и легкий, он зажил в отшельническом уединении. В этом уединении он и вспоминал свои звездные годы. И чувствовал: нынешняя ирония по поводу тогдашнего консерватизма его выдающегося коллеги обернулась бы теперь против него самого. Вот он и утаил имя скептика.
Да, не признавать электрона на рубеже атомного века тоже значило поставить себя вне физики, вне ее будущего. Углубляться дальше в устройство природы без электрона она уже не могла. Скоро это стало очевидно всем.
Скоро? Да еще всем? Нет, так только кажется издалека.
Почти неправдоподобно, но открытие «тел, меньших, чем атомы» отверг Вильгельм Конрад Рентген! В своей вюрцбургской лаборатории, где он сам сделал недавно эпохальное открытие, Рентген запретил ученикам и сотрудникам даже разговаривать об электронах. А в 1900 году, переехав в Мюнхен, перевез туда и свой запрет. В Мюнхенском университете стал строптивым свидетелем и неисправимым нарушителем этого запрета молодой выпускник Петербургского технологического института, наш будущий академик Абрам Федорович Иоффе. Он–то и рассказал впоследствии о своенравной позиции непреклонного Рентгена.
Но свойствами натуры научные позиции не объясняются. Своенравие может объяснить лишь одно: как научное несогласие превратилось в запрет. Характер Рентгена и впрямь отличали последовательность в поступках и непреклонность воли. Позднее эти черты дважды проявились с выразительностью, еще более необычайной, чем в истории с электроном.
…На исходе первой мировой войны (1914 — 1918) близкая к поражению Германия голодала. Семидесятитрехлетний Рентген терял силы от недоедания. Меж тем друзья из Голландии присылали ему масло и сахар. Однако он, полагая недостойным личное благополучие среди всеобщего бедствия, отдавал эти посылки для общественного распределения. И медленно таял.
Его нравственное чувство всегда оставалось неподкупным.
В последний год его жизни оно сыграло геростратову роль в судьбе его научного наследства. Он придавал значение только доведенным до конца исследованиям. И себя судил тем же судом, что других. А потому завещал без колебаний сжечь его неоконченные труды. В огне этой моральной беспощадности погибли и незавершенные работы молодого Иоффе, когда–то начатые в Мюнхене вместе с учителем.
Напрашивается догадка: так не оттого ли суровый Рентген отверг и открытие электрона, что исследования Томсона были в его глазах просто не доведенными до конца — до полной убедительности? (Иначе: были достойными огня, а не одобрения. Запрета, а не продолжения.) Возможно. Тем более что Иоффе удостоверил: электрон оставался для Рентгена «недоказанной гипотезой, применяемой часто без достаточных оснований и без нужды». Короче, может быть, электрону не повезло в Вюрцбурге и в Мюнхене только по причине сверхтребовательности Рентгена–экспериментатора?
Если в этом и заключена правда, то не вся. И не главная. А главная притаилась в двух процитированных Иоффе словах: «без нужды». Рентгену не нужен был электрон. Идейно не нужен!
Его классическая философия природы и философия познания могли обойтись без этой навязчиво–лишней детальки вещественного мира. Красивые и выверенные формулы классического описания всех явлений — механических и тепловых, электромагнитных и оптических — не требовали сведений о тельцах, «меньших, чем атомы». И не нуждались в представлениях о сложности внутриатомного мира. Сложность — это сложенность из чего–то. Но для свода законов классической физики она не имела значения.
Как ни странно, это легко понять. А осуждению это и вовсе не подлежит. Тут слышится голос тысячелетий.
— Если мы хотим заниматься астрономией, — говорил мудрый Тимей у Платона, — то нам незачем интересоваться небесными телами .
В самом деле: изучению было доступно в ту пору лишь перемещение небесных тел, а вовсе не их плоть — состав или структура. До них, безмерно далеких, дотянуться можно было только поэтическим воображением, Веками оно могло вольничать как угодно, населяя их богами или душами усопших, наделяя их доброй или недоброй волей. Это не имело никакого значения для описания их движения по небосводу.
Так, для расчета плотины по законам гидродинамики всегда безразлично было, обитают ли рыбешки в реке.
Так, по замечанию Игоря Евгеньевича Тамма, Эйнштейн увидел, что электрон — «чужеземец в стране классической электродинамики». Правда, в отличие от классика Рентгена вольнодумный Эйнштейн не захотел лишать этого чужеземца прав гражданства в физике вообще: ему важно было, а что расскажет электрон о законах пока незнаемой страны, из которой он явился?
Конечно, Рентген далек был от мысли, будто классическая картина природы уже дорисована до конца. Свои лучи он назвал x–лучами и никогда не называл их «рентгеновскими». Им руководило не только отвращение к самовозвеличению. «Икс», как повелось, обозначало неизвестное. Однако он не сомневался, что это неизвестное со временем объяснится классически — на основе уже испытанного физического законодательства. Ему, Рентгену, и не мнилось, что рентгеновские лучи порож даются в глубинах атомного пространства такими «ненужными» и такими «недоказанными» электронами!
Молодой петербуржец Иоффе, чья энергичная талант ливость вынуждала Рентгена прощать ему строптивость, ежедневно позволял себе в разговорах с учителем «бороться за электрон». И в конце концов — вместе с новой физикой! — одолел непреклонность старика. Это маленькое, но знаменательное событие произошло через десять лет после открытия томсоновских корпускул — в 1907 году, ничем особенно не замечательном в истории познания микромира.
В том году:
…Тридцатишестилетний Эрнест Резерфорд лишь обо сновывался в Манчестерском университете Виктории, согласившись возглавить тамошнюю лабораторию.
…Двадцатидвухлетний студент Копенгагенского университета Нильс Бор еще учился на четвертом курсе.
…Двадцатилетний Эрвин Шредингер слушал в университете Вены лекции на втором.
…Пятнадцатилетний Луи де Бройль посещал предпоследний класс гимназии в Париже.
…Шестилетний Вернер Гейзенберг в Мюнхене играл со сверстниками в крестики–нолики.
…Льва Ландау еще не было на свете.
У квантовой физики все было впереди.
3
С открытия электрона началось, наконец, конструиро вание атома: создание его правдоподобных моделей.
Впрочем, люди крылатой мысли пытались угадать атомную структуру задолго до появления в эксперименте «тел, меньших, чем атомы». Но они строили без строительного материала. И плоды их нетерпеливого воображения научной критике не подлежали. Защите — тоже. Не было критериев правдоподобия. Однако сила интуиции бывала порою поистине фантастической.
Вот дневниковая запись одного студента Страсбургского университета:
22 янв. 1887 г.
Каждый атом… представляет собою полную солнечную систему, то есть состоит из различных атомопланет, вращающихся с разными скоростями вокруг центральной планеты или каким–либо другим способом двигающихся характерно периодически.
Страсбургский студент, конечно, ничего не мог сказать о своих атомопланетах и центральной планете. Но тем не менее за двадцать четыре года до рождения экспериментально обоснованной планетарной модели Резерфорда он дал ее кратчайший графический набросок.
Это был юноша из Москвы — Петр Лебедев. Будущая знаменитость: первый экспериментатор, сумевший измерить такую малость, как давление света! Об его дневниковой записи 1887 года никто не знал в течение семидесяти с лишним лет, пока В. Н. Болховитинов не опубликовал ее в I томе «Путей в незнаемое» (1960). Так, сам Лебедев не знал, что за полвека до него атом рисовался солнечной микросистемой московскому профессору М. Павлову (чьи лекции радовали молодого Герцена). И Джонстону Стони — крестному отцу электрона — представлялся тот же образ. И шлиссельбуржцу Николаю Морозову — высокоученому провидцу–фантазеру — грезился этот же астрономический призрак. И трезво–солидному Жану Перрену тоже. И многим другим — до и после открытия электрона.
До и после… Но все равно каждому это видение являлось точно впервые в истории познания. Тут не было повторения пройденного — не было преемственности идей. Просто в разное время разных счастливчиков, одаренных конструктивной интуицией, посещал один и тот же вещий теоретический сон. Это выглядит антиисторично, а на самом деле легко объяснимо. Тут всякий раз поднимала голос непреходящая вера людей в единство природы. Она диктовала гадательную мысль, что малое и большое в мироздании — Солнечная система и атом — устроены, наверное, по единому принципу, В этом было совсем немного физики, но очень много натурфилисофии. А натурфилософия меняется несравненно медленнее, чем наука.
Те, кому образ солнечной микросистемы стал являться уже после открытия Томсона, обладали, разумеется, громадным преимуществом: обнаружились кандидаты на роль атомопланет. Почему бы электронам не играть эту роль? Или похожую роль… Так, японский теоретик Нагаока сконструировал в начале века атомную модель в виде Сатурна с электронными кольцами. Это выглядело нисколько не фантастичней солнечной модели.
Естественно, и сам Дж. Дж. Томсон, выведший электроны на историческую сцену, тоже начал придумывать атом. Начал без промедлений — уже в 1898 году. Но он не прельстился возвышенными астрономическими параллелями. Он отвел электронам совсем прозаическую роль «изюминок в тесте». (Говорят, это сравнение ему и принадлежало, а вовсе не последующим популяризаторам. И от его «атома–кекса» или «атома–пудинга», право же, веяло свойственной ему в те годы общительностью и легкостью.)
А что было тестом в томсоновском атоме, если отрицательно заряженные электроны являли собою изюминки? Тестом служило само атомное пространство — «сфера с однородной положительной электризацией», как объявил Томсон. Так обеспечивалась электрическая нейтральность всякого атома как целого. Этому физическому требованию обязана была удовлетворять любая модель·.
Но любая атомная модель обязана была удовлетворять и еще одному требованию: быть устойчивой — этим свойством со всей несомненностью обладали реальные атомы долговечного земного вещества. А томсоновский кекс не обладал.
Дело в том, что электроны–изюминки покоились в положительном тесте. Меж тем уже была доказана теорема, объяснявшая, что любая система неподвижных зарядов обречена на развал: силы электрического взаимодействия — притяжения или отталкивания — тотчас выводят заряды из состояния покоя.
Томсону пришлось озаботиться улучшением своей модели. И через шесть лет, в 1904 году, он позволил электронам вращаться внутри атома отдельными группками — кольцами. Однако желанного правдоподобия снова не получалось. Непоправимый порок гнездился в произвольной идее положительно заряженного пространства. Но это пока оставалось нераскрытым — неразоблаченным экспериментально.
Пока… До Резерфорда…
4
Он был учеником Дж. Дж. — первым заморским докторантом в кембриджском старинном Тринити–колледже. Когда в 1895 году двадцатичетырехлетний сын новозеландского фермера там появился, старожилы отнеслись к нему свысока. Но уже вскоре по Кембриджу распространилась фраза одного заслуженного физика:
— Мы заполучили дикого кролика из страны антиподов, и он роет глубоко!
Правда, слово «кролик» не очень подходило к ново зеландцу: высокий рост, атлетическое сложение, громадный голос. Зато эпитет «дикий» подходил как нельзя лучше: признавалась первозданная сила выходца из антиподов и слышался намек на его необузданный нрав. А рыл он действительно глубоко — столько глубоко, что первым дорылся до атомных глубин. Не сразу — пласт за пластом. Но чудом редкой проницательности он не задерживался в толщах пустой породы. Мало кто жил в науке так продуктивно.
Электрон был открыт на его глазах. И даже при его существенном участии, как засвидетельствовал другой ученик Томсона — Р. Стрэтт (Рэлей–младший). Но тогда же воображение новозеландца захватила иная — недавно возвещенная во Франции — физическая новость: радиоактивность!
То была еще совсем не изведанная земля. И это он, Резерфорд, распознал в непонятной радиации урана два вида заряженных лучей, окрестив их греческими буквами «альфа» и «бета». Он показал, что альфа–лучи — поток тяжелых частиц с удвоенным зарядом « + », а бета–лучи — поток легких частиц с единичным зарядом «—»., И это он установил, что радиоактивность — самопроизвольный распад сложных атомов, идущий по статистическим законам случая. Вместе с еще более молодым Фредериком Содди, он, едва переваливший за тридцать, высказал и доказал ошеломляющее утверждение: в каждом акте радиоактивного распада сбывается сама собой вековечная мечта алхимиков — превращение одного химического элемента в другой.