81466.fb2 Вероятностный мир - читать онлайн бесплатно полную версию книги . Страница 7

Вероятностный мир - читать онлайн бесплатно полную версию книги . Страница 7

В 1881 году — мальчику Эйнштейну из южнонемецкого города Ульма было тогда около двух лет — чикагский физик Альберт Майкельсон провел нашумевшие оптические измерения. Определялась скорость распространения света от земного источника в двух противоположных направлениях: в сторону движения самой Земли и в обратную сторону. Земля летит по своей орбите со скоростью 30 километров в секунду. Ожидалось, что в первом случае скорость света относительно Земли уменьшится на эту величину (300 000 — 30), а во втором — увеличится (300 000 + 30). Результаты обоих измерений совпали! Не имело значения, догонял ли источник испущенный им свет или удалялся от него. (Оговоримся, что на самом–то деле во втором измерении Майкельсона источник как бы оставался на месте: измерялась скорость светового луча в направлении, перпендикулярном полету Земли, и потому быстрота этого полета на световую скорость вообще влиять не могла. Ясно, что сути опыта это не меняло.) В общем, получалось, что от движения источника скорость света не зависит!

Это вопиюще противоречило классической механике.

Но легче было усомниться в добропорядочности опыта, чем во всесилии формул. Измерения повторялись со всевозрастающей точностью. Но успокоения не приносили. Напротив, все яснее делалось, что Майкельсон был прав. Двадцать с лишним лет, пока рос и без особого блеска двигался по дороге жизни мальчик из Ульма, умнейшие теоретики выдвигали сложные гипотезы, дабы выручить механику Ньютона из беды. Они не решались сделать только самого простого и самого трудного: признать, что эта механика, великая и совершенная, дошла до границ своей применимости. Очевидно, обнаружилась область движений, попросту ей не подвластная. И надо строить новую механику — такую, что ньютоновская окажется в ней только частью правды природы.

Эту новую механику предложила теория относительности.

Молва тотчас приписала ей ужасающую замудренность — недоступность трезвому разумению. Без стеснения ее называли абракадаброй. В просторечии — бессмыслицей.

Даже через тридцать лет Эйнштейн, уже стареющий, и жаловался, и предостерегал:

«Нельзя считать какое–либо положение бессмысленным только потому, что оно отличается от положения классической физики».

А еще позднее, когда ему было шестьдесят восемь, он в своей «Автобиографии» сказал по поводу одной идеи, что у него нет в ее защиту никаких аргументов, кроме «веры в простоту и понятность природы». Всю жизнь он оставался верен себе. То, что третировалось как абракадабра, — детище его ранней молодости — тоже родилось из этой философической веры в гармоническую простоту истинной картины мира. Она, эта вера, отвращала юношу Эйнштейна от хитроумных оправданий классической теории, когда та не умела справиться с трудностями физики. Искусственными допущениями можно было на время выпутаться из любых противоречий. «Но какое отношение имеет к этому природа?» — задавался он молчаливым вопросом.

Это не выдуманный здесь для удобства рассказа риторический вопрос. Почти дословно так сформулировал его сам Эйнштейн, объясняя читателям «Таймс» побудительные мотивы своих исканий.

Юношей он тоже пытался конструировать классические оправдания и для результатов Майкельсона, и для гипотезы Планка. Как это происходило, он в «Автобиографии» не рассказал, но замечательно, что и он вкусил от соблазнов, которые сам же внутренне осуждал. И вот оказывается: его победительная легкость 1905 года имела свою драматическую предысторию. Вполне обыкновенную, если только позволительно называть обыкновенными «страдания мыслей, лежащих на сердце», как выразился однажды Нильс Бор. Были месяцы, когда он, двадцатиоднолетний, размышляя на классический лад о непонятном постоянстве скорости света и о планковских квантах, тоже пережил смятение:

«…Все мои попытки приспособить основы физики к этим результатам потерпели полную неудачу. Это было так, точно из–под ног ушла земля и нигде не видно было твердой почвы, на которой можно было бы строить».

И наконец, в его признаниях точно повторились слова Планка — даже дважды:

«Постепенно я стал отчаиваться… Чем дольше и отчаяннее я старался, тем больше я приходил к заключению, что только открытие общего… принципа может привести нас к надежным результатам».

А все–таки… а все–таки его отчаяние было иного свойства, чем у Планка. Тот совершенно не был готов к расставанию с классическим идеалом описания природы, а он, Эйнштейн, был готов к этому совершенно. Пытаясь «докопаться до истинных законов» старыми путями, он, оказывается, уже втайне искал новый общий принцип механики. И что всего неожиданней — искал его уже долго: «Такой принцип я получил после десяти лет размышлений…»

После десяти? Но если в двадцать шесть он его нашел, то, стало быть, начал искать в шестнадцать? Да, именно так. Вопреки поверхностному впечатлению, оказывается, было откуда взяться сроку на долгую работу мысли. В этом–то настойчивом поиске нового общего принципа его вела подспудная вера в простоту и понятность природы.

Да, радостно наслаждаться своими теоретическими видениями за столом патентного бюро и на улицах Берна он стал не раньше, чем почуял твердую почву под ногами, — не раньше, чем искомый принцип ему открылся. И был он, этот принцип, действительно просто формулируем. Довольно четырех слов, чтобы высказать его без комментариев: время и пространство относительны.

Но без комментариев эти четыре слова не только просты, но и пусты.

4

Классический идеал описания природы покоился на убеждении, что время абсолютно и абсолютно пространство.

Это означало: во Вселенной висят видимые всеми Часы, идущие в едином ритме для всех наблюдателей. Для всех время одно!

То же с пространством: во Вселенной есть единый для всех масштабов расстояний — всегда и всюду равно обязательный эталон длины.

Такая неизменяемость — ни–от–чего–независимость! — хода часов, измеряющих время, и длины линеек, измеряющих пространство, представлялась бесспорной и даже необсуждаемой. Неискушенному сознанию и сегодня кажется, а разве может быть иначе?

…Уже многократно рассказана–перерассказана фантастическая притча об «Эйнштейновых близнецах»: один из них улетает с околосветовою скоростью в космический рейс и, пропутешествовав два года, возвращается домой, а на пороге его встречает брат–двойняшка, постаревший на двадцать лет. И оба не удивляются происшедшему, потому что еще при расставании заранее знали, что ход времени на ракете замедлится в десять раз из–за ее громадной скорости по отношению к Земле. А если бы ракете была задана скорость, еще более близкая к световой, близнец–космонавт путешествовал бы по своим часам еще более короткий срок, скажем, год или месяц. Между тем его оставшийся на Земле брат прожил бы за это малое время все те же двадцать земных лет.

Эта возможная в будущем история фантастична лишь потому, что человечество покуда не может запускать ракеты с околосветовыми скоростями. В остальном все вполне реалистично. И правдива даже та подробность, что оба близнеца — по–прежнему молодой и так наглядно постаревший — встретятся без удивления.

Люди будущего, они с пеленок усвоят относительность времени и пространства, как мы и наши деды–прадеды с пеленок усваивали абсолютность того и другого. Задумаемся: эта примелькавшаяся притча с близнецами до сих пор всюду именуется «парадоксом часов», а парадокс— это нечто несообразное с общепринятым пониманием вещей. Называя научную правду парадоксальной, мы нечаянно признаемся, что еще не можем сладить с ее новизной.

Эту необоримую новизну теория относительности сохраняет по сей день. Сохраняет, хотя давно уже нет на свете «мальчика из Ульма», а найденные им законы природы давно уже служат — и верно служат! — повседневной практике конструирования ускорителей, атомных реакторов и многого другого… О какой же сохраняющейся новизне может идти речь? Вернее было бы говорить о трудно искоренимой «старизне» нашей психологии. Ей принадлежат все наши веры и предубеждения. Среди них: бесконтрольное ощущение универсальности — всепригодности — наших земных секунд и метров. А все оттого, что каждодневный опыт жизни надежно ручается за эту всепригодность.

Эйнштейн недаром написал:

«Прости меня, Ньютон; ты нашел единственный путь, возможный в твое время для человека величайшей научной творческой способности и силы мысли. Понятия, созданные тобой, и сейчас еще остаются ведущими в нашем физическом мышлении, хотя мы теперь и знаем, что если будем стремиться к более глубокому пониманию взаимосвязей, то должны будем заменить эти понятия другими, стоящими дальше от сферы непосредственного опыта».

Попросив прощения у Ньютона, Эйнштейн как бы попросил прощения и у всех землян вообще: все мы в своем непосредственном опыте насквозь пронизаны наследственным ньютонианством — мускульной философией наших движений и зримой механикой окружающих нас вещей.

Такого рода прощения должны были бы попросить у современников и все вершители квантовой революции: она еще дальше увела нас от нас самих — еще глубже окунула наше сознание в сферу природных взаимосвязей, неощутимых в земной повседневности.

А откуда вывел Эйнштейн относительность времени и пространства? Он доверился природе.

Она продемонстрировала: скорость света остается одной и той же, догоняет ли источник свет или уносится в противоположную сторону. Короче: от движения «тела отсчета» скорость света не зависит. Юноша из Ульма признал постоянство этой скорости мировым законом.

Он поступил покоряюще просто: неоспоримый факт, противоречивший, однако, механике Галилея — Ньютона, он сделал исходным пунктом новой механики. И тотчас отпала нужда в оправдании странного факта: он автоматически включался в описание движения материальных тел как постулат. Правда, один историк уверяет, что Эйнштейн тогда еще не знал результатов Майкельсона. Возможно. Но так или иначе, а в постоянстве скорости света он не сомневался. Это главное.

От экспериментальных данных он сделал шаг в абстракцию. Коротенький шаг, уводивший, однако, так далеко, что безупречную дорогу в эту физическую даль не сумели проложить ни Антон Лоренц, ни Анри Пуанкаре, расчистившие путь теории относительности, но ее не создавшие.

Никакое движение нельзя описать без выбора «тела отсчета» времен и расстояний. В измерениях чикагского экспериментатора «телом отсчета» дважды был источник света: сначала, когда он вместе с Землей прямолинейно и равномерно двигался вслед за световым лучом, потом — когда он точно так же двигался в другую сторону. Хотя источник был один, получалось, что «тел отсчета» для измерения скорости света было как бы два: Земля, несущая источник, выступила «единой в двух лицах». Да ведь Майкельсон и впрямь провел в одном опыте два опыта, а в принципе он мог провести оба измерения раздельно. Тогда уж без обсуждения было бы ясно, что узнал он скорость света относительно двух «тел отсчета», двигавшихся в свой черед относительно друг друга прямолинейно и равномерно — по инерции. А свет этого точно и не заметил. Нет, действительно не заметил! Его заколдованная скорость оказалась одной и той же.

Можно возразить: Земля летит вовсе не по инерции, а под действием силы солнечного притяжения, и путь ее вовсе не прям, а криволинеен — она описывает эллипс. Это верно. Но радиус ее орбиты так огромен (150 000 000 километров) и период одного оборота так долог (целый год), что за кратенькое время эксперимента позволительно без греха почитать движение Земли прямолинейным и равномерным.

«Тел отсчета», или «систем координат», — превеликое множество: описывать движение можно относительно чего угодно. Однако физики давно уже выделили в особый класс «тела отсчета», движущиеся по инерции. Их так и называют — инерциальные, или Галилеевы системы координат. Есть у них одна привлекательнейшая черта — кроме всего прочего, психологически приятная…

Легко вообразить: физик–наблюдатель сидит на таком «теле отсчета», оснащенный линейками и часами, наблюдает и описывает механические события в мире. А сам при этом не испытывает никакого действия внешних сил и со своей стороны никак не воздействует на окружающее, иначе он тотчас перестал бы двигаться только по инерции. Другими словами, его присутствие в мире никак не отражается ни на происходящих событиях, ни на их описании. И если вообразить другого наблюдателя на другом инерциальном «теле отсчета», о нем можно сказать в точности то же самое. И о третьем, четвертом, любом — то же самое. У всех описания происходящего будут равного достоинства — все они установят в природе одни и те же закономерности, выраженные в одинаковых формулах. Иными словами, все инерциальные системы координат равноправны.

Классики делали из этого равноправия единственное исключение: они полагали, что есть одно «тело отсчета», пребывающее в абсолютном покое. У теологов было для него слово Бог (с большой буквы). Художникам рисовался главный наблюдатель на заоблачном троне. Физики предпочитали говорить об абсолютном пространстве или о мировом эфире.

Да, кстати, опыт Майкельсона и был задуман для ответа на вопрос: дует ли навстречу Земле «эфирный ветер», когда она летит сквозь неподвижный эфир? Так бегун на закрытом стадионе сам создает себе встречный ветер, хотя воздух недвижим. Свет представлялся колебаниями эфира, и «эфирный ветер», дующий навстречу летящему источнику излучения, должен был бы тормозить световой луч. Обнаруженное постоянство скорости света стало приговором и моделям неподвижного эфира, и взгляду на свет как на «эфирное создание».

Но сторонники научных мифов религиозно неуступчивы. Даже через два десятилетия после рождения теории относительности — после, а не до! — физик Миллер объявил, что он все–таки почуял дыхание эфира. И при этом всерьез отметил, что в стене его высокогорной лаборатории было сделано окно, дабы освободить эфирному ветру путь к прибору. Этой избыточной деталью он нечаянно сам скомпрометировал любимую им идею всепроникающего эфира (если всепроникающий, то зачем же окно?). В начале 30–х годов его коллега Георг Иосс опроверг результаты Миллера, не отказав себе в удовольствии написать: «К сожалению, Миллер не указал, было ли в противоположной стене другое окно, чтобы эфирный сквозняк стал сильнее».

Те несостоятельные опыты сердито комментировал наш академик Сергей Иванович Вавилов. Потому сердито, что в подоплеке тогдашних игр с эфиром лежала надежда выбить из фундамента теории относительности краеугольный камень.

Шаг в абстракцию от измерений Майкельсона привел молодого Эйнштейна к первому постулату его механики:

Относительно всех инерциальных — движущихся прямолинейно и равномерно — систем отсчета скорость света одинакова!

К этому классически абсурдному постулату он прибавил второй, звучавший даже для классического уха как самоочевидность:

Законы природы проявляются одинаково во всех системах координат, движущихся по инерции!

А дальше начались логические следствия — «нежданные шутки» — те, что вскрыли зависимость массы от скорости и многое другое, поныне ставящее в тупик наше бедное воображение…

5

Если для всех наблюдателей, несмотря на их перемещение относительно друг друга, скорость светового луча оказывается одной и той же — 300 000 километров в секунду, — значит, по причине движения что–то у них происходит с километрами и секундами! Не может быть, чтобы у них у всех был общий масштаб длины и общий ритм времени: тогда наблюдатель, догоняющий луч, увидел бы, что за секунду свет прошел меньшее число километров, чем то, какое отметил бы удаляющийся от луча наблюдатель. Одинаковость полученных ими для скорости света результатов возможна, только если у одного из них врут измерительные приборы. Но оба могут поклясться, что приборы работают с предельной точностью. Тогда оба должны признать, что происходит чудо. Однако для истинного чуда есть в этом расхождении их приборов что–то слишком уж систематическое. Вранье тут явно мнимое: оно узаконено природой. Но как? Оба наблюдателя вынуждены согласиться, что нет у них общего масштаба расстояний и времен. Их приборы замеряют разные километры и разные секунды. Остается уловить, как эти различия зависят от их собственной скорости относительно источника света.

…Ходит анекдотическая история про Эйнштейна: кондукторша в берлинском трамвае однажды отчитала его с досадой: «Беда мне с вами — не умеете вы считать!» Он виновато улыбнулся.