9079.fb2
АПСС представляла собой сверхмалую подлодку водоизмещением 7,2/8,5 тонн, вооруженную одним торпедным аппаратом, находившимся в прочном корпусе. Управление субмариной разрабатывалось в двух вариантах: обычном (единственным членом экипажа) и дистанционном. В последнем случае прорабатывалась возможность управления АПСС по радио с так называемых "водителей" - надводных кораблей или самолетов. "Волновое управление" должно было осуществляться с помощью специальной аппаратуры "Кварц". В "телемеханическом" варианте лодка вместо торпеды несла установленный на ее месте заряд взрывчатки массой 500 кг.
В том же 1935 году, сразу после завершения проектирования, приступили к строительству. Его поручили Ленинградскому судостроительно-механическому заводу "Судомех". Были построены две лодки проекта АПСС, которые в 1936 году проходили заводские испытания. Однако на вооружение они приняты не были. В официальных отчетах по реализации проекта говорится, что "проблема дистанционного управления этой лодкой далека от положительного решения". До испытаний лодок с использованием "водителей" дело не дошло. В том же году обе лодки АПСС были разобраны.
АПЛ "Пигмей", 1936 г. Вторая подводная лодка Остехбюро получила шифр АПЛ (автономная подводная лодка) и условное обозначение "Пигмей".
Первоначально и ее разрабатывали как "автономную подводную лодку, управляемую с самолета". Однако в дальнейшем работы над ней продолжались уже как надлодкой, управляемой собственным экипажем. Занимались этим проектом те же сотрудники 1-го отдела Остехбюро во главе с Ф. В. Щукиным. 27 июня 1936 года проект одобрил зам. начальника ВМС РККА, флагман 1-го ранга И. М. Лудри. После этого в Ленинграде под руководством инженера А. Н. Щеглова был построен опытный образец "Пигмея".
По железной дороге лодку перевезли на Черное море, на Севастопольскую базу Остехбюро. Здесь в октябре 1936 года лодка прошла весь комплекс испытаний. В целях соблюдения секретности она именовалась только как "подводная лодка Остехбюро". В экипаж ее были назначены кадровые моряки из подводных сил Черноморского флота. Командиром АПЛ "Пигмей" на время испытаний назначили 29-летнего помощника командира подводной лодки А-3, старшего лейтенанта Б. А. Успенского.
Несмотря на то, что испытания "Пигмея" выявили ряд недостатков, которые помешали принять ее в состав флота, по их итогам руководство ВМС РККА приняло решение о постройке серии из 10 сверхмалых подводных лодок данного типа со сдачей первых шести в 1937 году. Несколько "Пигмеев" начали строить на "Судомехе" в Ленинграде, но так и не довели "до боеспособного состояния", а впоследствии их разобрали. В результате флот не получил ни одной серийной сверхмалой субмарины этого типа, и не только потому, что лодка имела конструктивные недоработки, но и вследствие "объективной сложности разрешения принципиально новых технических вопросов", как говорится об этом в официальных документах.
Рассматривался ряд других проектов сверхмалых подлодок. В частности, конструктора Е. Г. Ниренберга, Б. М. Малинина (проект "Москит"), Б. П. Ушакова (летающая лодка "ЛПЛ"). Однако ни один из них реализован не был.
Тому, помимо технических и финансовых причин, была еще одна, видимо самая главная. В 1937 году вдруг "выяснилось", что в Остехбюро, как и во всех других учреждениях страны, свили гнездо "враги народа". В течение 1937 - 38 гг. органы НКВД арестовали всех ведущих специалистов Остехбюро, включая его начальника В. И. Бекаури. Разгром данного научно-исследовательского учреждения является одним из ярчайших примеров запредельной тупости и абсолютного невежества тогдашних сотрудников советской контрразведки.
Так, в обвинительном заключении А. П. Грунского, сотрудника Особого отдела НКВД при Остехбюро, по делу главного конструктора АПСС и АПЛ "Пигмей" Ф. В. Щукина говорилось, что обвиняемый "проводил... вредительскую деятельность умышленно неправильным проектированием предназначенных для вооружения РККФ новых типов... подводных лодок, в результате чего запроектированные... оказались непригодными для вооружения РККФ". Этот образец идиотизма начальство утвердило 20 февраля 1938 года, а спустя 3 дня Ф. В. Щукина расстреляли. В следующем 1939 году расформировали и само Остехбюро.
В итоге, в распоряжении ВМФ СССР оказался только опытный образец АЛЛ "Пигмей". Эта лодка имела длину 16 метров, ширину 2,62 метра, стандартное надводное водоизмещение 18,6 тонн. Она могла развивать в надводном положении скорость до 6 узлов, под водои до 5 узлов. Дальность плавания полным ходом на поверхности составляла 290 миль, под водой - от 18 (полным) до 60 миль (экономическим). Предельная глубина погружения достигла 30 метров, автономность плавания - трое суток. Главным вооружением должны были стать две 450-мм торпеды типа "45-15" в бортовых торпедных аппаратах открытого (желобного) типа. Кроме того, на вооружении экипажа подлодки, состоявшего из 4 человек, имелся 7,62-мм ручной пулемёт ДП.
К началу войны с Германией АПЛ "Пигмей" числилась за Народным комиссариатом ВМФ как опытная подводная лодка. В строй она официально не вводилась, в состав какого-либо флота не зачислялась и хранилась на берегу, на территории испытательной базы морского оружия в Феодосии.
Летом 1942 года лодка оказалась в руках немцев. В августе ее осматривали итальянские подводники из 12-й флотилии MAS, воевавшие в Крыму. Дальнейшая судьба "Пигмея" неизвестна. Судя по некоторым сведениям, немцы вывезли ее на территорию Германии.
Блоха, 1939г. Конструктор В. Л. Бжезинский (1894 - 1985), бывший сотрудник Остехбюро, арестованный как "враг народа", но не расстрелянный, а посаженный в "шарашку", предложил два варианта сверхмалой подводной лодки "Блоха", сочетавшей в себе качества обычной подводной лодки и торпедного катера. Теоретически она могла подойти к цели, внезапно всплыть и атаковать ее как торпедный катер. А можно было тихо подойти к цели в подводном положении, атаковать, а затем всплыть и стремительно уйти.
"Блоха № I" должна была иметь надводное водоизмещение 52 тонны и единый двигатель, работающий на специальной смеси. "Блоха № 2" имела дизель-мотор и электромотор. Ее водоизмещение составляло 35 тонн, вооружение было представлено двумя бугельными торпедными аппаратами калибра 456 мм, одним пулеметом 12,7 мм. Согласно расчетам, надводная скорость должна была достигать 30-35 узлов, подводная 9-11 узлов. Экипаж - 3 человека.
По этому второму проекту в 1939 году на заводе имени А. Марти в Ленинграде заложили сверхмалую подводную лодку М-400. К 22 июня 1941 г. ее готовность составляла 60%, однако в блокадном городе работы по достройке в начале 1942 г. были прекращены. Затем в корпус лодки попал снаряд немецкой осадной артиллерии и серьезно его повредил. После войны недостроенную лодку разобрали на металл.
Истории было угодно, чтобы первой сверхмалой лодкой, официально вошедшей в состав советского ВМФ в 1948 году, стал трофейный немецкий "Зеехунд".
В годы Второй мировой войны подводные разведчики и диверсанты действовали по обе стороны линии фронта. Среди стран "оси" спецподразделения имели в своем составе флоты Италии, Германии и Японии. В антифашистской группировке - флоты Великобритании, США и СССР.
Характер и масштабы их действий, достигнутые успехи сильно различались между собой. Однако взятые вместе, они убедительно доказали значительные боевые возможности подводных солдат. "Люди-лягушки", использовавшие разнообразные технические средства и тактические приемы, смогли успешно решать многие задачи оперативно-тактического уровня.
После войны подразделения подводных разведчиков-диверсантов появились в составе большинства флотов мира. При этом в течение примерно 40 лет их развитие в основном шло по пути совершенствования той техники и тактики, что применялись в 1939 - 45 годах.
ВНУТРИ ПРОЧНОГО КОРПУСА
Какие только задачи не выполняли подводные лодки! Они выслеживали и уничтожали боевые корабли и транспортные суда противника в открытом море и в базах, скрытно доставляли в заданное место и высаживали разведывательно-диверсионные группы и десанты, транспортировали топливо, боеприпасы и другое военное имущество, разведывали маршруты движения судов противника и преграждали их путь минами, вывозили защитников осажденных городов и эвакуировали раненых.
Одного только не могли взять на себя подводные лодки прошлого решения задач стратегического масштаба. Это стало возможным лишь в последние десятилетия благодаря современной научно-технической революции. От неуклюжих сооружений, считавшихся плодом нездоровой фантазии чудаковатых художников вроде Фултона и Александровского, до быстроходных подводных ракетных кораблей, ставших главной ударной силой флотов, - таков путь развития боевого подводного корабля.
ДЛЯ ДЕЙСТВИЙ СКРЫТНЫХ И ВНЕЗАПНЫХ
Шестьдесят лет назад, плавая, как правило, в надводном положении, лодка обычно раньше обнаруживала своего надводного противника (по дыму из труб, высоким мачтам и надстройкам), чем он ее. Быстро погрузившись, она внезапно наносила торпедный удар. Что же касается ответного удара, то нанести его было делом очень нелегким, поскольку лодка весьма трудноуязвимая цель. Резко меняя скорость и направление движения, а также глубину погружения, опытные подводники успешно отрывались от преследования многочисленных кораблей даже в те годы, когда максимальная (часовая) скорость лодок под водой была в 2-4 раза меньше скорости, которую могли развивать противолодочные надводные корабли.
Возможность свободно маневрировать в трехмерном водном пространстве (в отличие от надводных кораблей, всегда "прилепленных" к поверхности моря) была и остается огромным преимуществом подводной лодки. Более того, сейчас это преимущество стало еще внушительнее. Бороться с таким высокоманевренным противником чрезвычайно тяжело.
В годы Второй мировой войны плавать в надводном положении стало намного опаснее появившиеся на кораблях и самолетах радиолокационные станции легко обнаруживали надводную цель на большом расстоянии. К тому же на каждую действующую в море подводную лодку приходилось уже до 30 кораблей и 40 самолетов противолодочной обороны. Лодки же все еще оставались "ныряющими", 70-80 процентов времени они вынуждены были находиться в надводном положении. А если и были оснащены шнорхелем, то двигались на перископной глубине чрезвычайно медленно. Весьма низкими были скорость и дальность их подводного хода. Обнаружив караван судов даже за 50 миль, подводная лодка, как правило, не могла ни догнать его, ни пробиться к охраняемым судам через широко растянувшийся конвой.
Дорого обходилась и малая глубина погружения. Гидроакустика, глубинные бомбы и другие противолодочные средства вынуждали подводную лодку уходить на все большую глубину.
Перед кораблестроителями возникла проблема: создать корпус лодки, который будет выдерживать огромное наружное давление, не занимая при этом слишком большой доли весового водоизмещения.
Подводная лодка обычно имеет два корпуса - легкий и прочный. Легкий корпус придает наружным обводам лодки необходимую обтекаемость. В нем размещены балластные цистерны, некоторые вспомогательные механизмы. Прочный корпус представляет собой основную несущую конструкцию лодки, способную противостоять давлению воды на глубине.
Известно, что круг - наилучшая форма сечения для сосудов, работающих под большим давлением. Именно поэтому прочному корпусу стремятся придать такую форму с минимальными отклонениями от "идеальной" окружности. Корпус сваривают из секций цилиндрической и конической форм. Прочность его увеличивают продольными и поперечными связями, обеспечивающими равнопрочность конструкции.
Большое внимание уделяется выбору материала, из которого изготавливают корпус. Он должен обладать небольшим удельным весом, хорошо работать на сжатие, иметь высокий предел текучести и модуль упругости, быть стойким к воздействию морской воды.
Достижения металлургов и конструкторов можно оценить, сравнив глубину погружения лодок в начале двадцатого века (около 50 м) и теперь, когда она увеличилась, как сообщает иностранная печать, на порядок, то есть в десять раз. Нетрудно себе представить, что это должен быть за "сосуд", который выдерживает давление в 50 атмосфер, такое же, как в трубках современного высоконапорного парового котла.
СКОРОСТЬ, МАНЕВРЕННОСТЬ
Прежде в погоне за высокой надводной скоростью корпус лодки вытягивали в длину. Отношение длины к ширине лодки дошло чуть ли не до двадцати (у эсминца оно вдвое меньше). Теперь эта тенденция подверглась решительному пересмотру. Современный подводный корабль похож на лодки С. Джевецкого постройки 1879-1881 годов - еще один пример того, что порою новое - это хорошо забытое старое.
Экспериментально доказано, что наименьшим сопротивлением движению под водой обладают относительно короткие корпуса, имеющие форму тела вращения с тупой носовой частью и заостренной, конической хвостовой. На зарубежных лодках конструкторы нашли возможным увеличить диаметр корпуса до 10 метров. Это позволило сделать основные отсеки трехъярусными, что оказалось очень выгодным: в них можно более удобно разместить экипаж и оборудование.
Борьба за увеличение скорости движения лодки под водой началась с улучшения ее обтекаемости. Была снята артиллерия, уменьшилось количество выступающих частей и вырезов в легком корпусе. Коренным образом изменилась его форма, приспособленная ранее в основном к надводному плаванию. Высота надводной части лодки, всплывшей на поверхность, резко сократилась. Осуществилась дерзкая фантазия Жюля Верна: на подводных лодках уже нет надстройки и верхней палубы, над водой возвышается только узкая обтекаемая рубка и небольшая часть "спины" китообразного корпуса.
Как пишет иностранная печать, новая форма несколько ухудшила надводные качества: увеличилась осадка, снизились скорости и маневренность в надводном положении, но с этим мирятся: теперь уже 80 процентов времени подводные корабли проводят под водой и именно там развивают наибольшую скорость (до 35-40 узлов).
Существенно изменились в последние десятилетия тактико-технические характеристики подводных лодок. Об их боевых возможностях судят прежде всего по энергоресурсу и мощности подводного хода.
Энергоресурс подводного хода дизель-аккумуляторных подводных лодок определяется, как известно, емкостью аккумуляторных батарей. Чтобы увеличить ее, в аккумуляторах устанавливают большое число сравнительно тонких пластин. Наряду со свинцовыми, давно известными, применяют серебряно-цинковые аккумуляторы повышенной емкости, ищут и иные пути запасания энергии впрок. Но лучшим из них был общепризнан переход к атомной энергетике.
У атомных зарубежных субмарин энерговооруженность достигла семи лошадиных сил на тонну водоизмещения, скорость хода под водой - 30-40 узлов, дальность плавания в тех же условиях исчисляется теперь десятками и сотнями тысяч миль. Напомним, что дизельные лодки имели в 2-3 раза меньшую энерговооруженность и скорость подводного хода, и то лишь, как правило, в течение одного часа. Дальность их плавания под водой экономическим ходом (5 узлов, доступные любому паруснику) составляла примерно 300-400 миль. На перископной глубине они могли преодолеть расстояние в 10 000 миль.
Высокая подводная скорость, ставшая возможной благодаря научно-технической революции, выдвигает новые требования, о которых раньше и речь не шла. Требуется особо точное управление маневрами корабля по вертикали. Нужна высокоточная стабилизация хода по глубине, иначе лодка может "провалиться" ниже предельной глубины погружения. Автоматические стабилизаторы на зарубежных лодках выдерживают заданную глубину хода с точностью до 10 сантиметров. Горизонтальные рули, обеспечивающие маневрирование лодки в вертикальной плоскости на ходу, монтируются по-новому. Кормовые рули устанавливаются впереди гребного винта, а носовые выносятся на рубку или смещаются в сторону кормы дальше от носовой части, где размещена гидроакустическая аппаратура, чтобы ее работе не мешали шумы, возникающие при обтекании рулей струями воды.
Управление горизонтальными и вертикальными рулями обычно объединяется на одном посту рулевого-оператора. Подводная лодка может маневрировать одновременно в двух плоскостях, резко изменяя курс и глубину погружения.
ЗА СТЕНОЙ БИОЛОГИЧЕСКОЙ ЗАЩИТЫ
В исторически короткий срок, исчисляемый одним-двумя десятилетиями, корабельная ядерная энергетика сделала настолько крупные шаги в своем развитии, что ее влияние вышло далеко за пределы собственно кораблестроения. Коренным образом изменились взгляды на роль военных флотов, а это привело к пересмотру стратегии в ряде стран. В чем же сущность этого переворота? Какие качества новых силовых установок вызвали столь существенные и далеко идущие перемены?
Регулируемая реакция деления ядер предоставила человечеству возможность создать компактный источник огромного количества тепловой энергии. Если лучшие нефтяные топлива при сгорании выделяют 10 000 калорий тепла на килограмм, то такое же количество ядерного горючего выделяет тепла в два миллиона раз больше. При этом ядерные установки весят меньше, чем обычные вместе с топливом, необходимым для их работы, и совершенно не нуждаются в подводе воздуха из атмосферы или другого окислителя, без чего не может обойтись ни одна теплосиловая установка. Это обстоятельство и послужило причиной необычайного качественного скачка в развитии подводных лодок.
Неблагоприятной особенностью ядерных установок является их радиоактивное излучение, вынуждающее устанавливать мощную биологическую защиту, системы дозиметрического контроля, но с этим мирятся: преимущества подводному кораблю ядерная энергетика дает неоценимые.
Так заглянем же за стену биологической защиты и посмотрим, что происходит в реакторе. Начинать придется с той самой невидимой глазу частицы, которая сделала революцию в энергетике. Имя ей - нейтрон.
Суть управляемой ядерной реакции такова. Свободный нейтрон, блуждая в массе ядерного горючего, на мгновение соединяется с одним из ядер и делает его неустойчивым. Ядро делится на два одинаково заряженных осколка, которые, взаимно отталкиваясь, разлетаются в разные стороны. При этом выделяется тепло, и чем больше ядер делится в единицу времени, тем сильнее нагревается масса горючего.
Для отвода тепла ядерное горючее заключают в оболочки из материала с хорошей теплопроводностью. Получается своеобразный стержень. Группа таких стержней, окруженная общей оболочкой, составляет один тепловыделяющий элемент (ТВЭЛ). Тысячи таких элементов находятся в активной зоне реактора, имеющей вид решетки, похожей на соты. Тепло из активной зоны отводится омывающим ее теплоносителем.