9079.fb2 В океанских глубинах - Подводный флот (сборник) - читать онлайн бесплатно полную версию книги . Страница 37

В океанских глубинах - Подводный флот (сборник) - читать онлайн бесплатно полную версию книги . Страница 37

В 1829 году кронштадтский механик Гаузен создал водолазный аппарат, состоявший из медного шлема, удерживаемого на плечах металлической шиной. Сам водолаз был одет в рубаху из непромокаемой ткани. Шлем вентилировался воздух для дыхания подавался через гибкий шланг ручным насосом, избыток воздуха свободно выходил из-под шлема. Вода в шлеме, являвшемся по сути дела маленьким колоколом, доходила до подбородка. Поэтому неосторожный наклон водолаза приводил к заполнению шлема водой. Отсутствие невозвратных воздушных клапанов и герметического соединения шлема с рубахой делало погружение в таком аппарате весьма небезопасным, но после некоторых усовершенствований он применялся в русском флоте вплоть до 70-х годов XIX века.

На 10 лет раньше русского немца Гаузена, еще в 1819 году, аналогичный аппарат создал другой немец - Август Зибе, переехавший в 1816 году из Германии в Англию на постоянное жительство. А. Зибе был в прошлом оружейным мастером, имел чин лейтенанта артиллерии, участвовал в сражениях при Лейпциге и Ватерлоо. В Европе существовала традиция, согласно которой водолазным делом и подводными работами в армии и на флоте занимались артиллеристы.

В 1834 году англичанин Норкросс сделал соединение шлема с рубахой герметическим, а выдыхаемый воздух предложил стравливать через отводную трубку с помощью специального клапана. В 1835 году англичанин Кэмпбелл предложил делать костюм водолаза цельным, а шлем присоединять к нему на болтах. В 1840 году Зибе существенно изменил конструкцию своего шлема, герметически соединив его с цельным резиновым костюмом. Так родился мягкий скафандр шлангового типа, нашедший применение во всем мире. Кстати, название "скафандр" предложил в 1850 году француз Кабироль.

Он был гораздо надежнее прежних устройств (позволял погружаться на глубину до 40 метров) и намного удобнее: в нем можно было нагибаться. Кроме того, позже Зибе сконструировал механическую помпу для подачи воздуха по шлангу в шлем. Это снаряжение стало классическим на 150 лет. Кстати говоря, вулканизировать резину и делать прочные шланги тогда еще не умели, поэтому над водолазами постоянно висела угроза разрыва шланга. Для повышения прочности шланг гофрировали, а потом смазывали смесью из смолы, воска и свечного "сала".

Третий этап. Много десятков лет верой и правдой служил водолазам ручной насос. Пока один из них находился на дне, два или четыре человека непрерывно должны были качать ему воздух. Замена ручного труда механической помпой освободила этих людей от однообразного и утомительного труда, но не улучшила условия работы водолаза на дне. Хотя шланг служил той спасительной жилой, по которой водолаз получал воздух, часто именно он становился причиной гибели: пережим или повреждение шланга, как правило, заканчивались трагически. А радиус действия водолаза ограничивался длиной "пуповины".

В связи с этим по-прежнему привлекательной - особенно с военной точки зрения - оставалась идея автономного снаряжения, в котором человек не зависел бы от подачи воздуха с поверхности и не ограничивался в своих подводных передвижениях. Попыток создания такого оборудования было много. Отметим три из них.

Подводный тарантас. Русский изобретатель И. Ф. Александровский предложил в 1877 году так называемый "подводный тарантас". Он позволял осуществлять подачу сжатого воздуха из баллонов, которые водолазы должны были перемещать за собой по грунту на специальной тележке. На тележке размещались 5 баллонов длиной 366 и диаметром 35,5 см. В них под давлением 70 атмосфер хранился запас воздуха, обеспечивавший 4 водолазам пребывание на грунте в течение 3 часов. Каждый баллон имел редуктор, с помощью которого давление подаваемого воздуха приводилось в соответствие с гидростатическим давлением на данной глубине.

Кроме того, на тележке находились мины, предназначенные для прикрепления их к корпусу вражеского корабля, гальваническая батарея ("подрывная машинка") и вьюшка с электрическим проводом для соединения мин с батареей. Таким образом, "подводный тарантас" являлся чисто диверсионным средством.

Проект удалось реализовать. Испытания, проведенные на глубине 5 метров, прошли успешно. Но, к сожалению, на вооружение флота это устройство принято не было.

Аквапед. В 1896 году американец Альваро Темпло сконструировал и успешно испытал весьма любопытное устройство, которое он назвал "аквапед" (водяной велосипед). Оно одновременно являлось источником воздуха для водолаза и подводным средством движения. Если "подводный тарантас" Александровского требовалось тащить за собой по морскому дну, то аквапед давал водолазу возможность перемещаться с определенными удобствами.

Это была алюминиевая емкость сигарообразной формы, длиной 16 футов (4,88 метра) и диаметром до 2 футов 3 дюймов (68,6 см). Внутри аквапед разделялся на три отсека. Концевые отсеки служили резервуарами сжатого воздуха, а в средний залезал человек в водолазном костюме и подсоединял шланг от своего шлема к резервуарам с воздухом. Его запаса хватало на 6 часов пребывания под водой. Снизу аквапед был снабжен педалями велосипедного типа для вращения гребного винта, находившегося в его задней части. В носовой части имелась сильная электрическая лампочка, работавшая от аккумуляторной батареи.

Управление по курсу и глубине подводный всадник осуществлял румпелем, похожим на велосипедный руль. Для погружения он набирал воду в небольшие балластные цистерны. На корпусе аквапеда снаружи закреплялись различные инструменты, необходимые для подводных работ. Кроме того, предусматривалось прикрепление двух мин, по одной с каждой стороны аквапеда. В нужном месте надо было закрепить аквапед на якоре, вылезти из него и, оставаясь подсоединенным к резервуару с воздухом, производить различные подводные работы.

К сожалению, современники сочли это изобретение своего рода курьезом, не имеющим никакого практического значения. Сегодня мы понимаем, что они сильно ошибались.

Аэрофор. В 1863 году французские изобретатели Бенуа Рукейроль и ОгюстДенеруз создали полуавтономный водолазный костюм, имевший аварийный запас сжатого

воздуха и маску современного типа (с одним большим стеклом) вместо шлема. На спине водолаза был закреплен резервуар, в который помпой нагнетался воздух. Резервуар имел регулятор, обеспечивавший поступление воздуха в маску по резиной трубке в соответствии с гидростатическим давлением на данной глубине. В 1875 году О. Денеруз усовершенствовал конструкцию. Теперь водолаз мог отсоединять шланг, идущий от помпы, и некоторое время передвигаться, пользуясь воздухом из резервуара. Такой аппарат (изобретатели назвали его "аэрофор") явился предшественником акваланга 40-х годов XX века. Аэрофор предназначался для аварийно-спасательных работ, но его можно было использовать и в диверсионных целях.

Четвертый этап. Наконец, офицер британского торгового флота Генри Флюсе в 1879 году сконструировал кислородный дыхательный аппарат циркуляционного типа, предназначенный для автономного погружения. Принцип его работы был прост: высвобождающийся при дыхании углекислый газ химически связывался в патроне-поглотителе, а необходимый кислород поступал из специального резервуара. Аппарат состоял из жесткого, довольно неудобного резинового шлема с очками, и двух дыхательных трубок, идущих от шлема к воздушному мешку, укрепленному на спине водолаза. Мешок был соединен с медным баллоном, в котором находился кислород под давлением в 30 атмосфер. Выдыхаемый воздух проходил через мешок, где находился поглотитель углекислоты - пенька, пропитанная едким калием.

Такие аппараты стала выпускать фирма "Зибе и Горман" - ведущая фирма мира в данной области техники. Он является прямым предком нынешних горноспасательных приборов, респираторов для пожарных, а также спасательных дыхательных аппаратов подводников. Но вместо стекла для всего лица (как в маске Рукеройля и Дене-руза) Флюсе применил менее совершенные очки. А надо заметить, что в те дни изобретатели работали в одиночку, не зная, что происходит даже в соседней провинции, не говоря уже о других государствах.

В дальнейшем Флюсе, Зибе и Горман, а затем Флюсе и Дэвис создали новые кислородные приборы, снабженные поглотителями углекислого газа, иначе говоря - первые закрытые системы. Один за другим стали появляться всевозможные прототипы, одни - с баллонами сжатого кислорода, другие - с генераторами кислорода, работавшими на перекиси натрия. К числу последних относится дыхательный аппарат, который создали в 1899 году французы Дегре и Бальтазар. Для выработки кислорода в нем использовалась электрическая батарея, поэтому он был тяжелым (20 кг) и недостаточно надежным, к тому же кислорода в нем хватало не более, чем на тридцать минут. Однако с таким дыхательным аппаратом водолаз мог действовать независимо от базы наверху.

В 1907 году английский флот принял на вооружение дыхательный кислородный аппарат конструкции С. Холла и О. Риза. Он предназначался для спасения экипажей затонувших подводных лодок.

Все это подготовило появление дыхательных кислородных аппаратов Роберта Дэвиса, получивших всемирное признание. В них выдыхаемый воздух проходит через мешок с каустической содой, которая поглощает углекислоту и восстанавливает кислород. Первая их модель была создана в 1911 году и тоже предназначалась для спасения экипажей затонувших подводных лодок. Именно аппаратами такого типа пользовались подводные диверсанты в период Второй мировой войны и ряд лет после ее окончания.

На первый взгляд кажется, что кислородный дыхательный аппарат почти идеален. Однако у него есть серьезный недостаток - ограничение допустимой глубины погружения 20 метрами. На большей глубине довольно часто происходит кислородное отравление мозга и потеря сознания, что влечет за собой гибель водолаза. Более того, в случае переохлаждения и сильной усталости отравление кислородом может произойти на глубине от 20 до 10 метров.

Пятый этап. Знаменитые "водяные легкие" - акваланг - изобрели французы Жак-Ив Кусто (1910-1997) и Эмиль Ганьян. Это было в 1943 году, во французском порту Тулон на Средиземном море. Если быть точным, они радикально усовершенствовали дыхательный аппарат на сжатом воздухе, который в 30-е годы сконструировал Ив ле Приер.

Суть их изобретения заключалась в создании так называемого легочного автомата. Благодаря автомату, подача воздуха из баллонов, в которых он находится под давлением 150-200 атмосфер, осуществляется пульсирующим образом (порциями) и по открытой схеме, т. е. с выдохом в воду. При этом исключается перемешивание отработанного воздуха со свежим, равно как и повторное его использование.

По сравнению с кислородными аппаратами, акваланги обладают целым рядом существенных преимуществ. Среди них надо выделить следующие: возможность безопасного погружения на глубину до 40 метров; исключение опасности кислородного отравления; исключение опасности отравления углекислым газом; сведение к минимуму опасности возникновения кессонной болезни и баротравмы легких.

Но время пребывания под водой с аквалангом значительно меньше, чем в кислородном аппарате. А главное, дыхание по открытой схеме влечет за собой непрерывное появление на поверхности воды пузырьков воздуха, демаскирующих водолазов. Поэтому в диверсионных целях акваланг может применяться весьма ограниченно.

Шестой этап. Военные конструкторы довольно быстро сумели объединить аппарат Дэвиса с аквалангом Кусто. Так появились воздушно-кислородные аппараты замкнутого цикла. В них с помощью регенеративной системы воздух (либо газовая смесь) очищается от углекислоты и обогащается кислородом. При этом количество подаваемого кислорода меняется в зависимости от глубины и температурных условий.

Так, работая на большой глубине в холодной воде, где водолаз может получить кислородное отравление, он дышит воздухом с минимально допустимым содержанием кислорода. А для ускорения процесса освобождения крови от азота на подъеме он увеличивает количество кислорода вплоть до того, что полностью переходит на дыхание им.

Комбинированные дыхательные аппараты дают человеку возможность оставаться под водой до 10 и более часов, погружаться значительно глубже 40 метров, сводить к минимуму опасность отравления воздушно-кислородной смесью.

ОФИЦЕРСКИЙ КЛАСС ПОДВОДНОГО ПЛАВАНИЯ

Специальное военно-морское учебное заведение по подготовке кадров для службы на подводных лодках. Сформирован в составе Учебного отряда подводного плавания, созданного при порте императора Александра III (Либава) Высочайшим утверждением мнения Государственного Совета от 27 марта 1906 г. Создателем и первым начальником УОПП был герой русско-японской войны контр-адмирал Э. Н. Щенснович.

Положение об Учебном отряде подводного плавания Высочайше утверждено императором Николаем II 29 мая 1906 г. Первыми слушателями Класса стали офицеры приписанных к отряду подводных лодок "Сиг", "Белуга", "Лосось", "Пескарь", "Стерлядь" и учебного судна "Хабаровск". Окончательно Класс сформировался к 1909 г. , тогда же определены программы и порядок обучения, составлены учебные пособия. Принимались офицеры, прослужившие на надводных кораблях три года.

Курс обучения делился на два периода. С ноября по март офицеры-слушатели изучали теоретические основы материальной части подводных лодок, вооружения, технических средств и общенаучные предметы (теория подводных лодок, устройство подводных лодок, девиация, двигатели внутреннего сгорания, электротехника, физика, минное дело, водолазное дело, маневрирование и др. ). Во втором периоде, с апреля по сентябрь, слушатели практиковались на лодках, последовательно исполняли обязанности матросов по всем специальностям экипажа и помощника командира, упражнялись в управлении лодками и проводили учебные торпедные (по 14-17 выстрелов) стрельбы, участвовали в тактических учениях. Общая продолжительность обучения составляла 10 месяцев. Успешно сдавшим экзамен присваивалось звание "офицер подводного плавания" и вручался специальный нагрудный знак.

Обучение проводилось на материальной базе УОПП, имевшего несколько учебных лодок, береговые классы, лаборатории исследования топлива и смазочных материалов, самодвижущихся мин (торпед), моторов, электротехники, классы и мастерские на транспорте "Хабаровск".

До Первой мировой войны Класс подводного плавания закончили 45 строевых офицеров флота, 4 инженер-механика, 5 корабельных инженеров, 2 военно-морских врача и 3 офицера по адмиралтейству.

С началом войны Класс вместе с Учебным отрядом подводного плавания переведен в Ревель, затем в Петербург.

СВЕРХМАЛЫЕ ПОДВОДНЫЕ ЛОДКИ

В первое послевоенное десятилетие серийное строительство сверхмалых подводных лодок прекратилось. Создавались лишь единичные образцы для отработки отдельных технических решений и проведения экспериментов. Однако с середины 50-х годов итальянские фирмы начали строить их на экспорт. В 70-е и 80-е годы идеей создания сверхмалых подлодок с учетом новых технологий заинтересовались военно-морские специалисты в США, СССР и Великобритании, было начато собственное строительство в Югославии, Северной и Южной Корее, Франции, ФРГ, Чили.

Известно много интересных проектов сверхмалых подводных лодок. Например, часто упоминается англо-немецкий проект "Piranha", итальянский GST-48, немецкий MSV-75, шведский "Sea Dagger" и другие. Однако большинство этих проектов реализовано не было, за исключением одной-двух экспериментальных лодок, не принятых на вооружение.

"...Интерес, проявляемый к подводным "малюткам" военно-морскими силами ряда капиталистических государств, еще раз свидетельствует об агрессивных намерениях империализма, который даже в условиях разрядки международной напряженности нацеливает свои ВМС на создание средств проведения диверсионно-разведывательных операций", писал советский журнал в 1976 году.

Примерно в это же время командование ВМФ СССР выдало ленинградскому Специальному морскому бюро машиностроения "Малахит" техническое задание на проектирование современной отечественной сверхмалой лодки. Оно определяло, что такая лодка предназначена для использования на морском театре с обширной мелководной акваторией шельфа, в диапазоне глубин от 10 до 200 метров, где должна решать задачи противодействия противнику и вести разведку. На ней следовало разместить соответствующее радиоэлектронное вооружение, минно-торпедное оружие, а также водолазный комплекс для выполнения специальных задач на глубинах до 60 метров. При этом водоизмещение лодки, согласно заданию, не должно было превышать 80 тонн.

Главным конструктором проекта 865 назначили Л. В. Чернопятова, в 1984 году его сменил Ю. К. Минеев. Опыт проектирования и создания подобных технических средств отсутствовал, поскольку наработки Остехбюро были засекречены и прочно забыты. Вновь требовалось начинать все с нуля. Новизна инженерной задачи обусловила необходимость выполнения значительного объема опытных работ, модельных и натурных испытаний, экспериментов по отдельным конструкциям, устройствам и технологическим процессам.

Малая подводная лодка проекта 865 "Пиранья". Закладка опытной подводной лодки состоялась в Ленинградском адмиралтейском объединении в июле 1984 года. Ее габариты составили: длина 28,2 метра, ширина 4,7 метра, средняя осадка 3,9 метра, водоизмещение - 218 тонн. Таким образом, данная лодка оказалась далеко не сверхмалой.

Корпус был выполнен из титанового сплава и рассчитан на глубину погружения 200 метров. Полная подводная скорость достигала 6,7 узлов, надводная - 6 узлов. Дальность плавания под водой экономическим ходом (4 узла) - 260 миль, в надводном положении - 1000 миль.

Комплекс оружия, размещаемого в средней части надстройки, состоял из двух грузовых контейнеров для транспортировки водолазного снаряжения (четырех буксировщиков типа "Протон" или двух транспортировщиков типа "Сирена-У") и двух устройств минной постановки, в которых размещались две мины типа ПМТ, либо две решетки для торпед "Латуш", используемых "самовыходом" на всем диапазоне глубин. Прочный грузовой контейнер, заполняемый забортной водой, представлял собой цилиндрическую конструкцию длиной около 12 метров и диаметром 62 см. Для погрузки, выгрузки и крепления водолазного снаряжения предусматривался выдвижной лоток. Его привод и органы управления располагались внутри прочного корпуса.

Устройство минной постановки состояло из пусковой проницаемой решетки с направляющими дорожками пневмомеханического выталкивающего устройства, обеспечивающего выталкивание мины вперед по ходу подлодки. Второй вариант предусматривал возможность размещения торпеды вместо мины.

В центральном посту располагались пульт оператора, приборные стойки и средства отображения информации, органы управления основными системами и устройствами. Под настилом палубы ЦП размещалась аккумуляторная яма. Ближе в нос от пульта оператора находились входной люк, перископ, шахта выдвижного устройства комплекса РЛС. Ограничивающая центральный пост носовая сферическая переборка имела входной люк в шлюзовую камеру, которая могла служить и как декомпрессионная. На переборке располагался иллюминатор для наблюдения за водолазами и шлюз для передачи предметов из ЦП в камеру. Здесь же находились приборы управления системой шлюзования водолазов.

Плоская кормовая переборка с газоплотной дверью отделяла центральный пост от электромеханического отсека, где на амортизированной платформе, отключенной от прочного корпуса, стояли на амортизаторах дизель-генератор мощностью 160 кВт, гребной электродвигатель постоянного тока в 60 кВт, насосы, вентиляторы, компрессор и другое оборудование. Система двухкаскадной амортизации в сочетании с шумопоглощающими покрытиями на корпусных конструкциях обеспечивала подлодке минимальное акустическое поле. Электромеханический отсек являлся необитаемым помещением, в походе его посещали только для проверки состояния технических средств. Винт, размещенный в поворотной кольцевой насадке, выполнял также функции вертикального руля.

Экипаж состоял из трех офицеров: командира-штурмана, помощника по электромеханической части и помощника по радиоэлектронному вооружению. Кроме них, на борт принималась разведывательно-диверсионная группа из шести человек, которая и являлась основным "оружием" корабля. Выход боевых пловцов мог осуществляться на глубинах до 60 метров и на грунте. Находясь вне лодки, они имели возможность использовать подаваемую с нее по проводам электроэнергию, а также пополнять запас газовой смеси в дыхательных приборах. Автономность лодки - 10 суток.

20 августа 1986 года опытная лодка, получившая тактический номер МС-520, была спущена на воду. Затем целых два года (!) она проходила заводские и государственные испытания, которые завершились лишь в декабре 1988 года. С 1989 года МС-520 находилась в Лиепае, где подчинялась командиру 22-й бригады подводных лодок. Особого энтузиазма командование соединения от присутствия лодки спецназначения не испытывало, так как выходы ее в море были сопряжены с определенными трудностями, а боевая подготовка, в силу своей специфики, оказалась весьма сложной.

Дальнейшее строительство сверхмалых лодок в Советском Союзе застопорилось, а потом и "власть сменилась". В результате серия ограничилась двумя единицами - опытной МС-520 и головной МС-521, сданной флоту в декабре 1990 года. Для каждой лодки были сформированы по два сменных экипажа. Существовал еще и технический экипаж, предназначенный для обслуживания обеих лодок.